首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of replacing NADPH with 1,1'-dicarboxycobaltocene in the catalytic cycle of cytochrome P450 BM3 has been explored. Using the holoprotein, the surrogate mediator was observed to reduce both the FAD and FMN in the reductase domain, as well as the iron in the heme domain. In an electrochemical system, the mediator was able to support lauric acid hydroxylation at a rate of 16.5 nmol product/nmol enzyme/minute. Similar electron transfer and catalysis were observed for the heme domain alone in the presence of the metallocene; the turnover rate in this case was 1.8 nmol product/nmol enzyme/minute. Parallel studies under the same conditions using a previously reported cobalt sepulchrate mediator showed that the two systems give similar results for both the holoenzyme and the heme domain.  相似文献   

2.
Cytochrome P450 enzymes require the delivery of two electrons to the heme protein for their enzymatic function. NADPH or NADH are usually used as reduction equivalents. In the absence of a substrate, NADPH may inactivate P450 enzymes. Furthermore, it is expensive, making it unsuitable for the preparative synthesis of fine chemicals. Approaches for replacing NADPH with an electrochemically generated reduction by using platinum-electrodes and different mediators are known. In the present study, NADPH was substituted by the mediator cobalt(III)sepulchrate and zinc dust that serves as an electron source. The mutated fatty acid hydroxylase P450 BM-3 F87A from Bacillus megaterium was chosen as a catalyst, since it shows a three-fold higher sensitivity and a nearly five-fold higher activity for p-nitrophenoxydodecanoic acid (12-pNCA) than the wild-type enzyme. The formation of p-nitrophenolate can easily be monitored using a photometer at 410 nm. The turnover rate of the zinc/cobalt(III)sepulchrate system reaches 20% of the NADPH activity. Compared to the electrochemical approaches the activity is at least 77% higher (turnover 125 eq min-1). The presented alternative cofactor system can be used instead of NADPH or expensive electrochemical devices (platinum electrodes) for fine chemical synthesis.  相似文献   

3.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

4.
Electro enzymatic processes offer novel opportunities in catalysis by combining advantages of enzyme catalysis and electrochemistry. An efficient electrochemical cofactor substitution system can help to overcome economical hurdles for the technical use of cofactor dependent enzymes. The in vitro biocatalysis with P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry as “electron source”. An electrochemical 24-well microtiter plate (eMTP) was developed, which can be employed in a standard microtiter plate reader and enables parallelized electrochemical experiments in combination with simultaneous optical measurements. The eMTP was applied to screen a P450 monooxygenase BM-3 mutein library and determine the behavior of P450 BM-3 muteins in an electrochemically driven surrogate assay with the mediator cobalt sepulchrate. Besides determining reaction rates also the influence of single reaction parameters e.g. applied potential, enzyme and mediator concentration were measured. Additionally the developed eMTP based screening system allows a fast development of an electro enzymatic process.  相似文献   

5.
BackgroundCytochrome P450 (P450) BM3, from Bacillus megaterium, catalyzes a wide range of chemical reactions and is routinely used as a model system to study mammalian P450 reactions and structure.MethodsThe metabolism of 2,6-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (BHTOOH) and 2-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadien-1-one (BMPOOH) was examined with P450 BM3 and with the conserved T268 and F87 residues mutated to investigate their effects on organic hydroperoxide metabolism. To determine the effects of the mutations on the active site volume and architecture, the X-ray crystal structure of the F87A/T268A P450 BM3 heme domain (BMP) was determined and compared to previous structures. To investigate the interactions of the substrates with the F87 and T268 residues, BHTOOH and BMPOOH were docked into the BMP X-ray crystal structures.ResultsLower metabolism of BHTOOH and BMPOOH was observed in the WT P450 BM3 and the T268A P450 BM3 mutant than in the F87A and F87A/T268A P450 BM3 mutants. Large differences were found in the F–G loop regions and active site cavity volumes for the F87A mutated structures.ConclusionsAnalysis of the metabolism, X-ray crystal structures, and molecular docking simulations suggests that P450 BM3 activity toward BHTOOH and BMPOOH is mediated through substrate recognition by T268 and F87, and the active site cavity volume. Based on this information, a simplified representation is presented with the relative orientation of organic hydroperoxides in the P450 BM3 active site.General significanceThe metabolism results and structural analysis of this model P450 allowed us to rationalize the structural factors that influence organic hydroperoxide metabolism.  相似文献   

6.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

7.
Murataliev MB  Feyereisen R 《Biochemistry》2000,39(41):12699-12707
NADP(H) binding is essential for fast electron transfer through the flavoprotein domain of the fusion protein P450BM3. Here we characterize the interaction of NADP(H) with the oxidized and partially reduced enzyme and the effect of this interaction on the redox properties of flavin cofactors and electron transfer. Measurements by three different approaches demonstrated a relatively low affinity of oxidized P450BM3 for NADP(+), with a K(d) of about 10 microM. NADPH binding is also relatively weak (K(d) approximately 10 microM), but the affinity increases manyfold upon hydride ion transfer so that the active 2-electron reduced enzyme binds NADP(+) with a K(d) in the submicromolar range. NADP(H) binding induces conformational changes of the protein as demonstrated by tryptophan fluorescence quenching. Fluorescence quenching indicated preferential binding of NADPH by oxidized P450BM3, while no catalytically competent binding with reduced P450BM3 could be detected. The hydride ion transfer step, as well as the interflavin electron transfer steps, is readily reversible, as demonstrated by a hydride ion exchange (transhydrogenase) reaction between NADPH and NADP(+) or their analogues. Experiments with FMN-free mutants demonstrated that FAD is the only flavin cofactor required for the transhydrogenase activity. The equilibrium constants of each electron transfer step of the flavoprotein domain during catalytic turnover have been calculated. The values obtained differ from those calculated from equilibrium redox potentials by as much as 2 orders of magnitude. The differences result from the enzyme's interaction with NADP(H).  相似文献   

8.
Flavocytochrome P450 BM3, an FMN-deficient mutant (G570 D), the component reductase and an FAD-containing domain were studied using surface enhanced resonance Raman scattering (SERRS). They were compared to spectra obtained from the free flavins FAD and FMN. For the holoenzyme and reductase domain, FMN is displaced during SERRS analysis. However, studies with the G570 D mutant indicate that FAD is retained in its active site. Analysis of SERRS frequencies and intensities provides information on the nature of the flavin binding site and the planarity of the ring, and enables an interpretation of the hydrogen bonding environment around ring III of the isoalloxazine moiety. Hydrogen bonding is strong at N3–H, C2=O and C4=O, but weak at N5. Structural alteration of the FAD domain of P450 BM3 is caused by removal of the FMN-binding domain. Further, the hydrogen bond at N3–H is lost and that at C2=O is weakened and the isoalloxazine ring system in the FAD domain appears to adopt a more planar arrangement. Alterations in the environment of the FAD in its isolated domain are likely to relate to changes in the redox properties and suggest a close structural interplay of FAD with the FMN-binding domain in intact flavocytochrome P450 BM3. Received: 5 August 1998 / Revised version: 11 February 1999 / Accepted: 15 February 1999  相似文献   

9.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.  相似文献   

10.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

11.
In order to influence the fermentation pattern of Propionibacterium freudenreichii towards enhanced propionate formation, growth and product formation with glucose and lactate as energy sources were studied in a three-electrode poised-potential amperometric culture system. With anthraquinone 2,6-disulfonic acid (E(0)' = -184 mV; poised electron potential = -224 mV) or cobalt sepulchrate (E(0)' = -350 mV; -390 mV) as mediator and an activated platinum working electrode, reduction of bacterially oxidized mediator occurred fast enough to keep more than 50% of the respective mediator (in minimum 0.4 mM) in the reduced state, up to a current of 2 mA. With glucose as substrate, 90.0 or 97.3% propionate was formed during exponential growth in the presence of 0.5 mM anthraquinone 2,6-disulfonic acid or 0.4 mM cobalt sepulchrate, respectively. Growth yields of 56.3 or 53.8 g of cell material per mol of substrate degraded were calculated, respectively, and the electrons were transferred quantitatively from the working electrode to the bacterial cells. With l-lactate, only 68.6 or 72.9% propionate was formed with the same mediators. The results are discussed with respect to energetics, electron transfer potentials, and potential application of the new technique in technical propionate production.  相似文献   

12.
Cytochrome P450 BM3, of bacterial origin, is one of only five isozymes of the ubiquitous family of over 400 metabolizing heme proteins with a known crystal structure and only one of two with both substrate-free and substrate-bound forms determined. P450 BM3 is of particular interest since it has a similar function and similar substrates as mammalian P450s particularly of the 4A subfamily. Thus, the extent to which the substrate-free form of P450 BM3 undergoes a conformational change upon binding of a typical fatty acid substrate, palmitoleic acid, has been the subject of recent active experimental effort. Surprisingly, direct examination of the substrate-free (pdb2hpd.ent and pdb2bmh.ent) and substrate-bound (pdb1fag.ent) forms do not provide a clear answer to this question. The main reason for this ambiguity is that the two substrate-free monomers reported in the crystal structures themselves have significantly different conformations from each other, one with a more open substrate-access channel than the other. Since there is no way to tell to which substrate-free form the substrate binds, the effect of substrate binding cannot be deduced directly from comparisons of the experimental substrate-bound and substrate-free forms. The computational studies reported here have been designed to more robustly establish the effect of substrate binding on this isozyme. Specifically, molecular dynamics simulations were performed for each of the two substrate-free forms found in the asymmetric unit of the X-ray structure and for the two corresponding substrate-bound forms, constructed by docking palmitloeic acid into each of them. Comparisons of the results showed that palmitoleic acid binding had little effect on the conformation of the more closed substrate-free form of P450 BM3. By contrast, in the more open substrate-free form, this same substrate induced a closing of the entrance to the substrate-binding channel. The MD averaged structure of these two complexes obtained from docking of pamitoleic acid into the two asymmetric units of the substrate-free form were also compared to that obtained starting with the X-ray structure of the substrate-bound form. These results taken together led to the conclusion that, if indeed the substrate induces conformational changes in P450 BM3, the mouth of the substrate-access channel first closes down in response to the presence of the substrate, followed by rotation of the F-G domain to further optimize the P450 BM3-substrate interaction that would occur at a later stage.  相似文献   

13.
This paper reports on the application of the molecular Lego approach to P450 enzymes. Protein domains are used as catalytic (P450 BM3 haem domain and human P450 2E1) or electron transfer (flavodoxin and P450 BM3 reductase) modules. The objectives are to build assemblies with improved electrochemical properties, to construct soluble human P450 enzymes, and to generate libraries of new P450 catalytic modules based on P450 BM3. A rationally designed, gene-fused assembly (BMP-FLD) was obtained from the soluble haem domain of cytochrome P450 BM3 from Bacillus megaterium (BMP) and flavodoxin from Desulfovibrio vulgaris (FLD). The assembly was expressed successfully and characterised in its active form, displaying improved electrochemical properties. Solubilisation of the human, membrane-bound P450 2E1 (2E1) was achieved by fusing key elements of the 2E1 enzyme with selected parts of P450 BM3. An assembly containing the first 54 residues of P450 BM3, the whole sequence of P450 2E1 from residue 81 and the reductase domain of P450 BM3 was constructed. The 2E1-BM3 assembly was successfully expressed in the cytosol of Escherichia coli. The soluble form of 2E1-BM3 was reduced in carbon monoxide atmosphere and displayed the typical absorption peak at 450 nm, characteristic of a folded and active P450 enzyme. Finally, the alkali method previously developed in this laboratory was used to screen for P450 activity within a library of random mutants of P450 BM3. A number of variants active towards non-physiological substrates, such as pesticides and polyaromatic hydrocarbons were identified, providing new P450 catalytic modules. The combination of these three areas of research provide interesting tools for exploitation in nanobiotechnology.  相似文献   

14.
Cytochrome P450s are synthetically attractive hydroxylation catalysts. For cell-free applications, a constant supply of NAD(P)H can be very costly. Mediators such as Zn/Co(III)sep can be an alternative cofactor system to NAD(P)H. Several mutants of cytochrome P450 BM3 with improved electron transfer rate to Zn/Co(III)sep have been obtained in our group. P450 BM3 M7 (F87A V281G M354S R471C A1011T S1016G Q1022R) was immobilized on DEAE-650S, further entrapped with k-carrageenan together with zinc dust which function as electron source and catalase which removes produced hydrogen peroxide instantly. Immobilized P450 BM3 M7 were treated with 0.05% (v/v) glutaraldehyde to enhance operational stability. P450 BM3 M7 retained around 76% of its activity and conversions stayed above 80% in 10 batch cycles, indicating a high stability of immobilized P450 BM3 M7. To explore the synthetic potential, a small-scale bioreactor was developed to investigate the stability and efficiencies of P450 BM3 M9 (R47F F87A M238K V281G M354S D363H W575C A595T). P450 BM3 M9 was used for the continuous conversion of 3-phenoxytoluene in a plug flow reactor (PFR) since P450 BM3 M9 has a 3-fold higher activity for 3-phenoxytoluene compared to P450 BM3 M7 which was used for optimizing immobilization conditions with the highest activity for 12-pNCA assay. The reactor could be operated for 5 days with total turnover numbers (TTNs) over 2,000.  相似文献   

15.
Light scattering and electron microscopy have been used to investigate the structural effects of the trivalent complexes hexaammine cobalt (III) chloride (Cohex), tris(ethylenediamine) cobalt(III) chloride (Coen), and cobalt(III) sepulchrate chloride (Cosep) on DNA condensation. These cobalt-amine compounds have similar ligand coordination geometries but differ slightly in size. Their hydrophobicity is in the order Cosep > Coen > Cohex, according to the numbers of methylene groups in these ligands. All of these compounds effectively precipitate DNA at high concentrations; but despite a lower surface charge density, Cosep condenses DNA twice as effectively as Coen or Cohex. UV and CD measurements of the supernatants of cobalt-amine/DNA solutions reveal a preferential binding of Delta-Coen over Lambda-Coen to the precipitated DNA, but there is no chiral selectivity for Cosep. Competition experiments show that the binding strengths of these three cobalt-amine compounds to aggregated DNA are comparable. A charge neutralization of 88-90% is required for DNA condensation. Our data indicate that 1) electrostatic interaction is the main driving force for binding of multivalent cations to DNA; 2) DNA condensation is dependent on the structure of the condensing agent; and 3) the hydration pattern or polarization of water molecules on the surface of condensing agents plays an important role in DNA condensation and chiral recognition.  相似文献   

16.
P450 BM3 and the nitric oxide synthases are related classes of flavocytochrome mono-oxygenase enzymes, containing NADPH-dependent FAD- and FMN-containing oxidoreductase modules fused to heme b-containing oxygenase domains. Domain-swap hybrids of these two multi-domain enzymes were created by genetic engineering of different segments of reductase and heme domains from neuronal nitric oxide synthase and P450 BM3, as a means of investigating the catalytic competence and substrate-binding properties of the fusions and the influence of tetrahydrpbiopterin and calmodulin binding regions on the electron transfer kinetics of the chimeras. Despite marked differences in hybrid stability and solubility, four catalytically functional chimeras were created that retained good reductase activity and which could be expressed successfully in Escherichia coli and purified. All of the BM3 reductase domain chimeras (chimeras I-III) exhibited inefficient flavin-to-heme inter-domain electron transfer, diminishing their oxygenase activity. However, the chimera containing the neuronal nitric oxide synthase reductase domain (chimera IV) showed good oxygenase domain activity, indicating that the flavin-to-heme electron transfer reaction is relatively efficient in this case. The data reinforce the importance of the nature of inter-domain linker constitution in multi-domain enzymes, and the difficulties posed in attempts to create chimeric enzymes with enhanced catalytic properties.  相似文献   

17.
The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c.  相似文献   

18.
Previous studies of the reduction of metmyoglobin and adducts by dithionite have been extended to horseradish peroxidase and its complexes. In addition, the reduction of metmyoglobin, horseradish peroxidase and adducts by a much bulkier reactant, cobalt(II) sepulchrate has been studied. Similar patterns of kinetic behavior were observed, namely, direct reduction of cyanide and imidazole adducts of the iron(III) proteins and indirect (via dissociation) reduction of the fluoride adduct. In the reduction of horseradish ferriperoxidase by cobalt(II) sepulchrate, three steps are observed and the spectral properties of the intermediate(s) and their kinetic behavior delineated. The final product is ferroperoxidase confirmed by spectral properties and its behavior on oxygenation. Reduction of cytochrome c(III) and Hipip by cobalt(II) sepulchrate appears to be a uniphasic reaction and second-order rate constants have been determined.  相似文献   

19.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

20.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号