首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants.  相似文献   

2.
The effects of maturity of maize at harvest, level of inclusion and potential interactions on the performance, carcass composition, meat quality and potential concentrate-sparing effect when offered to finishing beef cattle were studied. Two maize silages were ensiled that had dry matter (DM) concentrations of 217 and 304 g/kg and starch concentrations of 55 and 258 g/kg DM, respectively. Grass silage was offered as the sole forage supplemented with either 4 or 8 kg concentrate/steer daily or in addition with one of the two maize silages at a ratio 0.5 : 0.5, on a DM basis, maize silage : grass silage supplemented with 4 kg concentrate daily. The two maize silages were also offered as the sole forage supplemented with 4 kg concentrate/steer daily. The forages were offered ad libitum. The six diets were offered to 72 steers (initial live weight 522 s.d. 23.5 kg) for 146 days. There were significant interactions (P < 0.05) between maize maturity and inclusion level for food intake, fibre digestibility and daily gain. For the grass silage supplemented with 4 or 8 kg concentrate, and the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 or 1.0 of the forage component of the diet, total DM intakes were 8.3, 9.8, 8.9, 8.2, 9.2 and 9.8 kg DM/day (s.e. 0.27); live-weight gains were 0.74, 1.17, 0.86, 0.71, 0.88 and 1.03 kg/day (s.e. 0.057); and carcass gains were 0.48, 0.73, 0.56, 0.46, 0.56 and 0.63 kg/day (s.e. 0.037), respectively. Increasing the level of concentrate (offered with grass silage), maize maturity and level of maize inclusion reduced (P < 0.05) fat b* (yellowness). The potential daily concentrate-sparing effect, as determined by carcass gain, for the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 and 1.0 of the forage component of the diet were 1.3, −0.3, 1.3 and 2.4 kg fresh weight, respectively. It is concluded that the response, in animal performance, including maize silage is dependent on the stage of maturity and level of inclusion in the diet. Maize silage with a DM of 304 g/kg offered ad libitum increased carcass gain by 31%, because of a combination of increased metabolizable energy (ME) intake and improved efficiency of utilization of ME, and produced carcasses with whiter fat.  相似文献   

3.
A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live-weight gain, the reduced dressing proportion resulted in no beneficial effect on carcass gain, probably due to increased food intakes of lower digestible forage increasing gut fill. Meat quality or carcass composition were not altered by the inclusion of maize or whole-crop silages in grass silage based diets.  相似文献   

4.
In many countries, daily herbage accumulation on pasture declines towards zero during the winter period; thus, many pregnant ewes are housed and offered conserved forages supplemented with concentrate prior to parturition. The effects of forage type and feed value (FV), offering soybean meal with maize silage during mid and late pregnancy, and concentrate feed level in late pregnancy on the performance of ewes and their progeny (to slaughter) were evaluated. Ewes (n = 151) were assigned to one of nine treatments from mid-pregnancy until lambing. Medium FV and high FV grass silages (metabolisable energy concentrations of 10.7 and 12.0 MJ/kg DM) were offered ad libitum supplemented with either 15 or 25 kg concentrate/ewe during late pregnancy. Low and high DM maize silages (starch concentrations of 80 and 315 g/kg DM) were offered ad libitum either alone or with soybean meal (200 g/d) and supplemented with 15 kg concentrate during late pregnancy. A final treatment consisted of high FV grass silage supplemented with 5 kg soybean/ewe over the final 4 weeks of pregnancy. Ewes and lambs were put to pasture in a rotational-grazing system within 3 days of lambing. There were no interactions (P > 0.05) between grass silage FV and concentrate feed level for ewe or lamb traits. Increasing grass silage FV increased food intake (P < 0.001) during late pregnancy, ewe BW and body condition score (BCS) at lambing (P < 0.001), lamb BW at birth (P < 0.001) and weaning (P < 0.05), and reduced age at slaughter (P = 0.06). Increasing concentrate feed level increased metabolisable energy (P < 0.05) intake during late pregnancy but had no effect (P > 0.05) on ewe or lamb performance. Increasing maize DM at harvest and offering soybean meal with maize silage increased food intake (P < 0.001) and ewe BW and BCS at lambing (P < 0.05 or P < 0.01). Offering soybean meal with maize silage increased lamb BW at birth (P < 0.01) and reduced age at slaughter (P < 0.05). Reducing supplementation of high FV grass silage to 5 kg of soybean meal had no effect (P > 0.05) on animal performance. Replacing grass silage with maize silage did not affect (P > 0.05) BW gain of lambs. It is concluded that increasing the FV of the grass silage offered during pregnancy had the greatest positive impact on ewe and lamb performance.  相似文献   

5.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

6.
Whole crop third cut alfalfa, brown mid-rib (bmr) corn, and corn were chopped and inoculated with one of four microbial inoculants used. Uninoculated silage was the control treatment. Each crop was ensiled in four mini-silos (1 L glass jars) per treatment. All silos were fermented for 60 days at room temperature (22 °C), and then they were opened and analyzed for fermentation products, fiber constituents and N fractions. A fraction of wet silage was ground with a blender for 30 s. In vitro gas production was measured in 160 ml sealed serum vials at 3, 6, 9, 24, and 48 h using the wet ground silage. At 9 and 48 h, rumen fluid was analyzed for volatile fatty acids (VFA) and microbial biomass yield (MBY). In all the three crops, the four inoculants produced only minor changes in pH and fermentation products during ensiling. Of the variables measured, soluble nonprotein N fractions were the characteristics most often affected by some inoculants. At 9 h incubation, in vitro gas production and VFA did not differ between control and inoculated silages, but MBY did. Among crops, alfalfa and corn silages had higher MBY than did bmr corn silage. Among inoculants, three of the four inoculated silages produced more MBY than did control. At 48 h, alfalfa silage produced higher MBY than did corn or bmr silage, and two of the inoculated silages had more MBY than did the control. There was no inoculant by crop interaction. Results suggest that some silage inoculants are capable of altering rumen fermentation, even in cases where effects on silage fermentation are small, and that this effect may be linked to better preservation of crop protein during ensiling.  相似文献   

7.
Steers were fed 70∶30 forage∶concentrate diets for 205 days, with either grass hay (GH) or red clover silage (RC), and either sunflower-seed (SS) or flaxseed (FS), providing 5.4% oil in the diets. Compared to diets containing SS, FS diets had elevated (P<0.05) subcutaneous trans (t)-18:1 isomers, conjugated linoleic acids and n-6 polyunsaturated fatty acid (PUFA). Forage and oilseed type influenced total n-3 PUFA, especially α-linolenic acid (ALA) and total non-conjugated diene biohydrogenation (BH) in subcutaneous fat with proportions being greater (P<0.05) for FS or GH as compared to SS or RC. Of the 25 bacterial genera impacted by diet, 19 correlated with fatty acids (FA) profile. Clostridium were most abundant when levels of conjugated linolenic acids, and n-3 PUFA''s were found to be the lowest in subcutaneous fat, suggestive of their role in BH. Anerophaga, Fibrobacter, Guggenheimella, Paludibacter and Pseudozobellia were more abundant in the rumen when the levels of VA in subcutaneous fat were low. This study clearly shows the impact of oilseeds and forage source on the deposition of subcutaneous FA in beef cattle. Significant correlations between rumen bacterial genera and the levels of specific FA in subcutaneous fat maybe indicative of their role in determining the FA profile of adipose tissue. However, despite numerous correlations, the dynamics of rumen bacteria in the BH of unsaturated fatty acid and synthesis of PUFA and FA tissue profiles require further experimentation to determine if these correlations are consistent over a range of diets of differing composition. Present results demonstrate that in order to achieve targeted FA profiles in beef, a multifactorial approach will be required that takes into consideration not only the PUFA profile of the diet, but also the non-oil fraction of the diet, type and level of feed processing, and the role of rumen microbes in the BH of unsaturated fatty acid.  相似文献   

8.
The process of ensiling was studied in fresh maize (15% dry matter (DM)), wilted maize (18 and 24% DM) and maize mixed with 5–20% of wheat straw (18, 25 and 29% DM). Silages with 24% DM were preserved better than those with lower dry matter content. There was a significant change, with time, in pH, titrable acidity, volatile fatty acids, lactic acid, number of lactic acid bacteria, volatile nitrogen and soluble sugars in all the treatments. There was a significant decline in volatile fatty acids (P<0.05) and ammonia (P<0.01) production, and a significant increase in soluble sugar (P<0.01) in silages made after wilting. A significant decline in titrable acidity (P<0.01), volatile fatty acid production (p<0.05) and ammonia nitrogen (P<0.01), and a significant increase in pH (P<0.01) were found in silages of maize mixed with wheat straw. The overall rate of fermentation decreased during the first few days of fermentation in wilted and wheat straw silages, but the final products had characteristics of a good silage. In the second experiment the effect of urea and molasses was studied on wheat straw plus maize (15:85) silage with an initial DM content of 31–34%. Three levels of molasses (0, 3 and 6% of fresh weight) and two levels of urea (0 and 0.5% of fresh weight) were studied. Urea treatment with 3% molasses was found to be the best on the basis of silage characteristics.  相似文献   

9.
Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48 degrees C). When stored at 25 degrees C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48 degrees C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants.  相似文献   

10.
The effect of applying a commercial lactic acid bacterial inoculant, at 5.6 × 104 cfu/g fresh material, to vetch, wheat, direct-cut and wilted alfalfa silages has been studied under laboratory conditions, and on wheat also under farm conditions. Dry matter losses in the inoculated vetch and alfalfa silages were smaller than in the control silages, due to improved fermentation in the former as indicated by a faster and larger pH decrease and by a faster and larger lactic acid build-up. Volatile fatty acid analysis also indicated more efficient fermentation patterns in the inoculated vetch and alfalfa silages with less ethanol, acetic and butyric acids compared with the respective control silages. The inoculant suppressed enterobacteria and clostridia in the inoculated direct-cut alfalfa silage. The inoculant did not have a great effect on the wheat silages.  相似文献   

11.
A feeding experiment was conducted with 10 dairy cows of the Fleckvieh breed and the cross Red Holstein Friesian × Fleckvieh, to study whether feeding with grass silage at the morning meal and maize silage at the evening meal (treatment B: alternating forage allocation) affects forage intake and milk production, in comparison with combined feeding with these two silages at each meal (treatment A). In order to prevent a selective forage consumption in treatment A, the two silages were given as a homogeneous mixture of nearly equal portions (51.6% maize silage, 48.4% grass silage) of dry matter (DM). The experiment was of switch-back design, with the treatment sequences ABA and BAB, and three experimental periods of 6 weeks.The daily forage consumption averaged 12.3 kg DM when the silages were given as a mixture and was significantly higher than the total forage consumption of 11.8 kg DM (P < 0.05) during the alternating allocation of the silages. In treatment B, daily intake of maize silage (7.10 kg DM) was greater than that of grass silage (4.70 kg DM/day). Furthermore, variation between cows in forage intake was significantly higher in this treatment than in treatment A. Average daily milk yield for treatment A was 18.75 kg with 3.84% fat and 3.70% protein, and 18.10 kg with 3.76% fat and 3.68% protein for treatment B. Production was significantly higher (P < 0.05), by 0.65 kg milk or 0.90 kg FCM, for treatment A.  相似文献   

12.
Safflower seed (SS), Carthamus tinctorius L., has the highest concentration of linoleic acid among 80 oilseeds. It was hypothesized that an Iranian variety of SS can be effectively fed with cottonseeds (CS) to maintain feed intake, energy metabolism and productivity of early lactation cows under negative energy balance. Our objective was to determine effects of feeding diets containing 100 g whole CS with (1) no SS (SS0), (2) 75 g CS + 25 g SS (SS25), or (3) 50 g CS + 50 g SS (SS50), per kg of dietary DM, on feed intake, rumen fermentation, blood metabolites and milk production of early lactation cows fed diets based on a uniform mixtures of alfalfa hay and corn silage. Nine multiparous early lactation Holstein cows (46 ± 7 d in milk) were used in a replicated 3 × 3 Latin square design study with three 21-d periods. Each period had 14 d of adaptation and 7 d of data collection. Dietary inclusion of SS did not affect (P>0.10) DM intake, rumen pH and concentrations of ammonia and VFA, blood concentrations of insulin, non-esterified fatty acids, urea and triglycerides, and milk production. Adding SS linearly reduced blood glucose (P=0.05) and beta-hydroxybutyric acid (P<0.05), and increased blood total cholesterol (P<0.01) and low-density lipoproteins (P<0.05) concentrations. Results demonstrated that SS as an economical and rich source of essential fatty acids can be included up to 50 g/kg of dietary DM alongside CS for early lactation cows without affecting feed intake while maintaining rumen fermentation, peripheral energy supply and milk production.  相似文献   

13.
Cellulolytic micro-organisms are potent silage inoculants that decrease the fibrous content in silage and increase the fibre digestibility and nutritional value of silage. This study aimed to evaluate the effects of Bacillus subtilis CCMA 0087 and its enzyme β-glucosidase on the nutritional value and aerobic stability of corn silage after 30 and 60 days of storage. We compared the results among silage without inoculant (SC) and silages inoculated with B. subtilis 8 log10 CFU per kg forage (SB8), 9 log10 CFU per kg forage (SB9) and 9·84 log10 CFU per kg forage + β-glucosidase enzyme (SBE). No differences were observed in the levels of dry matter, crude protein and neutral detergent fibre due to the different treatments or storage times of the silos. Notably, the population of spore-forming bacteria increased in the SB9-treated silage. At 60 days of ensiling, the largest populations of lactic acid bacteria were found in silages treated with SB8 and SBE. Yeast populations were low for all silages, irrespective of the different treatments, and the presence of filamentous fungi was observed only in the SBE-treated silage. Among all silage treatments, SB9 treatment resulted in the highest aerobic stability.  相似文献   

14.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

15.
The current study compared beef production, quality and fatty acid (FA) profiles of yearling steers fed a control diet containing 70 : 30 red clover silage (RCS) : barley-based concentrate, a diet containing 11% sunflower seed (SS) substituted for barley, and diets containing SS with15% or 30% wheat dried distillers’ grain with solubles (DDGS). Additions of DDGS were balanced by reductions in RCS and SS to maintain crude fat levels in diets. A total of two pens of eight animals were fed per diet for an average period of 208 days. Relative to the control diet, feeding the SS diet increased (P<0.05) average daily gain, final live weight and proportions of total n-6 FA, non-conjugated 18:2 biohydrogenation products (i.e. atypical dienes) with the first double bond at carbon 8 or 9 from the carboxyl end, conjugated linoleic acid isomers with the first double bond from carbon 7 to 10 from the carboxyl end, t-18:1 isomers, and reduced (P<0.05) the proportions of total n-3 FA, conjugated linolenic acids, branched-chain FA, odd-chain FA and 16:0. Feeding DDGS-15 and DDGS-30 diets v. the SS diet further increased (P<0.05) average daily gains, final live weight, carcass weight, hot dressing percentage, fat thickness, rib-eye muscle area, and improved instrumental and sensory panel meat tenderness. However, in general feeding DGGS-15 or DDGS-30 diets did not change FA proportions relative to feeding the SS diet. Overall, adding SS to a RCS-based diet enhanced muscle proportions of 18:2n-6 biohydrogenation products, and further substitutions of DDGS in the diet improved beef production, and quality while maintaining proportions of potentially functional bioactive FA including vaccenic and rumenic acids.  相似文献   

16.
The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339±15 kg, were allotted in a completely randomized design using a 2×2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464±15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P>0.05). Subcutaneous fat from animals fed CS diet had greater C12:0, C16:0 and C18:0 contents (P<0.03). In addition, CS diets reduced the C18:1 and C18:2 cis-9, trans-11 contents in subcutaneous fat (P<0.05). The muscle from animals fed CS tended to higher C16:0 and C18:0 contents (P<0.11), and decreased C18:1, C18:2 cis-9, trans-11 and C18:3 contents (P<0.05) compared with SB. The Δ9-desaturase index was greater in muscle from animals fed SB (P<0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P<0.05). Meat from animals fed SB diets had less lightness and redness indices than meat from animals fed CS diets after 14 days of age. In conclusion, the addition of ground cottonseed in the finishing diets did increase the saturated fatty acid content of the longissimus dorsi. However, animals fed cottonseed exhibited greater lightness and redness of beef. In this study, the addition of vitamin E did not affect qualitative characteristics of meat.  相似文献   

17.
Biohydrogenation of C18 fatty acids in the rumen of cows, from polyunsaturated and monounsaturated to saturated fatty acids, is lower on clover than on grass-based diets, which might result in increased levels of polyunsaturated fatty acids in the milk from clover-based diets affecting its nutritional properties. The effect of forage type on ruminal hydrogenation was investigated by in vitro incubation of feed samples in rumen fluid. Silages of red clover, white clover and perennial ryegrass harvested in spring growth and in third regrowth were used, resulting in six silages. Fatty acid content was analysed after 0, 2, 4, 6, 8 and 24 h of incubation to study the rate of hydrogenation of unsaturated C18 fatty acids. A dynamic mechanistic model was constructed and used to estimate the rate constants (k, h) of the hydrogenation assuming mass action-driven fluxes between the following pools of C18 fatty acids: C18:3 (linolenic acid), C18:2 (linoleic acid), C18:1 (mainly vaccenic acid) and C18:0 (stearic acid) as the end point. For kC18:1,C18:2 the estimated rate constants were 0.0685 (red clover), 0.0706 (white clover) and 0.0868 (ryegrass), and for kC18:1,C18:3 it was 0.0805 (red clover), 0.0765 (white clover) and 0.1022 (ryegrass). Type of forage had a significant effect on kC18:1,C18:2 (P < 0.05) and a tendency to effect kC18:1,C18:3 (P < 0.10), whereas growth had no effect on kC18:1,C18:2 or kC18:1,C18:3 (P > 0.10). Neither forage nor growth significantly affected kC18:0,C18:1, which was estimated to be 0.0504. Similar, but slightly higher, results were observed when calculating the rate of disappearance for linolenic and linoleic acid. This effect persists regardless of the harvest time and may be because of the presence of plant secondary metabolites that are able to inhibit lipolysis, which is required before hydrogenation of polyunsaturated fatty acids can begin.  相似文献   

18.
Lactobacillus spp. from an inoculant and Weissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion of d-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 and L. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.Silage is now the most common preserved cattle feed in many countries, including Japan. It is well established that lactic acid bacteria (LAB) play an important role in silage fermentation. Epiphytic microflora, the microorganisms naturally present on forage crops, are responsible for silage fermentation and also influence silage quality (3, 11, 15). Lactobacilli and lactic acid-producing cocci, e.g., leuconostocs, lactococci, streptococci, pediococci, and Weissella species, are major components of the microbial flora in various types of forage crops (3). Stirling and Whittenbury (21) reported that leuconostocs were the most numerous and widely distributed on forages and that lactobacilli occurred mostly on grasses. Cai et al. (3) examined a large number of forage crops and grasses and also found that the predominant LAB were lactic acid-producing cocci and that lactobacilli were the least numerous and mostly homofermentative. Ruser (17) found that although all LAB groups were present in chopped-maize samples, homofermentative lactobacilli and heterofermentative leuconostocs were present in the highest numbers.In order to improve silage quality, many LAB-containing biological additives have been developed and are currently available (13, 20, 25). These inoculants may inhibit the growth of harmful bacteria and enhance lactic acid fermentation during ensiling periods. The epiphytic LAB influence the effectiveness of silage inoculants because the introduced bacteria must compete with these LAB (12). Therefore, the LAB species and their characteristics in the silage environment require further study. However, while an increasing number of studies have reported positive benefits from using some bacterial inoculants as silage additives, relatively few have reported the effect of epiphytic LAB, especially Leuconostoc and Weissella species, on silage fermentation. In the present study, the characterization of Leuconostoc and Weissella species isolated from forage crops and their influence on silage fermentation were examined.  相似文献   

19.
Selected strains of lactic acid bacteria isolated from grass silage were found to flourish when inoculated into irradiation-sterilized forage under gnotobiotic conditions. The acid content and pH of these silages resembled naturally fermented silage. Inoculation of gnotobiotic silage with Clostridium sporogenes and C. tyrobutyricum failed to cause any noticeable deterioration of silage quality.  相似文献   

20.
This study examined the production of com silages with low or high lactic acid concentrations, provided by the addition of formic acid (0.5%), molasses (5%) or microbial inoculant (homofermentative lactic acid bacteria, 10 g/tonne). After the fermentation period, sheep were fed the silages to determine true and apparent digestibility of the organic matter and microbial protein synthesis. The experiment were carried out with four KıvırcıkxMorkaraman sheep, 1.5 years old, fixed with cannula in their rumen and duodenum.Lactic acid concentrations were significantly higher in silages treated with enzyme or molasses compared to other specific treatments. Acetic acid concentration was highest in silage treated with formic acid, and lowest in silage treated with molasses (P < 0.05). The by-pass of crude protein was highest in silage treated with formic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号