首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cats we have simultaneously (monopolarly) recorded the responses in different parts of the associative cortex (ac) (motor cortex, proreal, orbital, anterior marginal, and mid-part of the suprasylvian gyri) appearing for different peripheral stimulations (stimulation of the skin of the forelimbs, a light flash and a sound click). In all the regions of the ac associative responses (ar) almost identical in configuration appeared to all the peripheral stimulations. The ar of the orbitofrontal and the motor cortex differed from the ar of the suprasylvian gyrus in the shorter latent period and greater stability. In each part of the ac we found the same focus of maximum activity for all the peripheral stimulations. For paired stimulations of the same and different modalities the greatest stability in relation to the blocking influence due to the conditioning stimulation characterized the ar which appeared in response to skin stimulation in the orbitofrontal cortex and the ar which appeared in the suprasylvian gyrus on exposure to a light flash. It is assumed that in the orbitofrontal cortex an efferent discharge is formed in response to pulses of different sensory modality whereas in the suprasylvian gyrus there is only sensory integration. Some aspects of afferent convergence are discussed.Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 126–139, March–April, 1970.  相似文献   

2.
We examined the inhibitory and excitatory components of the nonadrenergic noncholinergic (NANC) innervation of the guinea pig airways by in vivo and in vitro methods. Electrical stimulation of the vagus in chloralose-urethan-anesthetized guinea pigs after cholinergic and adrenergic blockade produced peripheral airway constriction (insufflation pressure) and tracheal relaxation (pouch pressure). Vagal stimulation was applied for 90 s at 5-V pulses of 2-ms duration at frequencies of 5, 15, 25, and 35 Hz in each group (n = 6). The pouch relaxation peaked at 15 Hz. The insufflation pressure was highest at 5 Hz. Field stimulations of the same frequencies were applied on tracheal spirals and lung parenchymal strips. The maximal relaxation of the trachea occurred at 15-35 Hz. The lung parenchymal strip tensions increased almost linearly as the frequency increased from 5 to 35 Hz. The results of the study indicated a frequency-dependent response for both excitatory and inhibitory components of the NANC, which operate at different frequencies for optimal responses.  相似文献   

3.
The endogenous role of the alpha-adrenergic system in the maintenance of mean arterial pressure (MAP), total peripheral resistance (TPR), cardiac output (CO) and its distribution, and plasma norepinephrine and epinephrine release was investigated by the administration of selective alpha-adrenoceptor antagonists to halothane-anesthetized rats. The blockade of alpha 1-, alpha 2-, and both alpha 1- and alpha 2-receptors was accomplished by i.v. infusions of prazosin, rauwolscine, and phentolamine, respectively. The microsphere technique was used for the determination of CO and its distribution. Since the infusions of the three antagonists caused similar decreases of MAP and heart rate, the results suggest that postjunctional alpha 1- and alpha 2-receptors are both important in the control of MAP. During the infusion of prazosin, TPR was decreased but CO was not changed. In contrast, CO was decreased but TPR was not changed during the infusions of rauwolscine and phentolamine. Thus, CO was reduced after the blockade of alpha 2- but not alpha 1-receptors. All three antagonists caused an increase in percent distribution of CO to the lungs and muscle, suggesting that the sympathetic nervous system plays the greatest vasoconstrictor influence in the lungs and muscle via stimulations of both subtypes of alpha-adrenoceptors. The administration of either prazosin or rauwolscine caused little change in plasma catecholamine levels. In contrast, phentolamine caused large increases in both epinephrine and norepinephrine levels. Therefore catecholamine release was only increased after concurrent blockade of both alpha 1- and alpha 2-adrenoceptors.  相似文献   

4.
The purpose of this study was to define, in hyperventilated and unanesthetized cats, the role of the posterior thalamic nuclei in pain mechanisms. Unit activities of these structures were compared to those of the ventro-posterior nucleus during non-noxious (touch, brushing) and noxious stimulations (pinches and intra-arterial injections of bradykinin into the limbs). 135 cells with somatic inputs and clear peripheral excitatory receptive field were studied. The cells driven by noxious stimulations were located in the posterior group nuclei as anatomically defined by Rinvik. These units, preferentially excited from contralateral receptive fields, were localized in POm, POl, suprageniculate nuclei, the magnocellular division of the medial geniculate body (Mgmc) and the ventral part of the lateral posterior nucleus. At this level two groups of units were found: those driven only by noxious stimulations and those driven by both noxious and non-noxious stimulations. On contrast, cells recorded at the levels of the VPm and VPl were not activated by noxious stimuli. These results emphasize the role of the posterior thalamic nuclei in pain processing.  相似文献   

5.
6.
Beta-adrenergic blockade increases peripheral vascular resistances acutely and paradoxically lowers arterial blood pressure in most species but not in the rat. In this study the hypothesis has been tested of a significant participation of unopposed alpha-adrenergic mediated vasoconstriction following beta-adrenergic blockade in blood pressure regulation of conscious rats. Alpha-adrenergic blockade in propranolol-pretreated rats significantly decreased mean arterial blood pressure by 22%, heart rate by 20%, and total peripheral resistance by 14% when compared to rats treated only with propranolol, whereas cardiac output was similar in the two groups. A significant 28% reduction of coronary blood flow in rats treated with alpha- and beta-adrenergic blockers, when compared to rats treated only with propranolol, is most likely related to phentolamine's indirect effects on the coronary vasculature. Cerebrovascular and renovascular resistances were similar in these groups. All changes reported were significant at the 95% confidence level. It is concluded that the mechanism of increased blood pressure following beta-adrenergic blockade in rats is related at least in part to unmasking of unopposed alpha-receptor tone, which, however, is minimal in the coronary, cerebral and renal circulations.  相似文献   

7.
Sustained feedback effects of L-horizontal cells on turtle cones   总被引:5,自引:0,他引:5  
Prolonged stimulation of the periphery of their receptive field can evoke in turtle cones sustained complex depolarizations or sustained membrane oscillations. In cones in which such effects of prolonged peripheral stimulation are not apparent, the injection of short depolarizing pulses can reveal a sustained increase of electrical excitability in response to prolonged peripheral illumination. The sustained effects of prolonged peripheral illumination have characteristics similar to those of the feedback depolarizations evoked by flash peripheral stimulation: they are labile in untreated retinas, can be blocked by either hyperpolarization, Co2+ or agents that depolarize the L-horizontal cells. They are associated with a decrease in the membrane input resistance. In retinas bathed in Sr2+- or Ba2+-containing media, prolonged peripheral illumination evokes a sustained repetitive discharge of spikes. These experiments demonstrate that the feedback effects of the L-horizontal cells on the cones are not only transient but also sustained and that the sustained effects of peripheral stimulations are associated with an increase in membrane Ca2+ conductance. The possible nature of the feedback connection between L-horizontal cells and the cones is discussed.  相似文献   

8.
Hallmarks of the mammalian diving response are protective apnea and bradycardia. These cardiorespiratory adaptations can be mimicked by stimulation of the trigeminal ethmoidal nerve (EN5) and reflect oxygen-conserving mechanisms during breath-hold dives. Increasing drive from peripheral chemoreceptors during sustained dives was reported to enhance the diving bradycardia. The underlying neuronal mechanisms, however, are unknown. In the present study, expression and plasticity of EN5-bradycardias after paired stimulation of the EN5 and peripheral chemoreceptors was investigated in the in situ working heart-brain stem preparation. Paired stimulations enhanced significantly the bradycardic responses compared with EN5-evoked bradycardia using submaximal stimulation intensity. Alternating stimulations of the EN5 followed by paired stimulation of the EN5 and chemoreceptors (10 trials, 3-min interval) caused a progressive and significant potentiation of EN5-evoked diving bradycardia. In contrast, bradycardias during paired stimulation remained unchanged during repetitive stimulation. The progressive potentiation of EN5-bradycardias was significantly enhanced after microinjection of the 5-HT(3) receptor agonist (CPBG hydrochloride) into the nucleus tractus solitarii (NTS), while the 5-HT(3) receptor antagonist (zacopride hydrochloride) attenuated the progressive potentiation. These results suggest an integrative function of the NTS for the multimodal mediation of the diving response. The potentiation or training of a submaximal diving bradycardia requires peripheral chemoreceptor drive and involves neurotransmission via 5-HT(3) receptor within the NTS.  相似文献   

9.
In anaesthetised rats, effects of blockade of the NO-synthetase upon hemodynamic shifts were studied (arterial pressure, cardiac output, general peripheral vascular resistance), the shifts being evoked either by increase (infusion of polyglucon) or by decrease (orthostasis) in the cardiac output. Under the blockade of the NO-synthetase, the pressor effects of polyglucon increased by 27% and the orthostatic hypotension by 72%. Responses of general peripheral vascular resistance changed in the same direction. The findings suggest importance of the NO secretion by the vessels' endothelium for formation of the systemic hemodynamics responses.  相似文献   

10.
Human helper T-cell (Th) responses to influenza A virus were studied by analyzing T-cell receptor V beta gene diversity in hemagglutinin-specific Th lymphocytes. The T-lymphocyte population from peripheral blood became quickly oligoclonal when stimulated in vitro with the HA306-329 peptide, and T-cell receptor V beta 3 genes were mainly expanded. Moreover, specific junctional region oligonucleotide probes corresponding to hemagglutinin-specific clones were used to estimate temporal diversity during antigenic stimulations.  相似文献   

11.
We have previously described a nonirradiation-based regimen combining costimulation blockade, busulfan, and donor bone marrow cells that promotes stable, high level chimerism, deletion of donor-reactive T cells, and indefinite survival of skin allografts in mice. The purpose of the current study is to determine the efficacy of this tolerance regimen in preventing acute and chronic rejection in a vascularized heart graft model and to compare this regimen with other putative tolerance protocols. Mice receiving costimulation blockade (CTLA4-Ig and anti-CD40 ligand) alone or in combination with donor cells enjoyed markedly prolonged heart graft survival and initially preserved histological structure. However, tolerance was not achieved, as evidenced by the eventual onset of chronic rejection characterized by obliterative vasculopathy and the rejection of secondary skin grafts. In contrast, following treatment with costimulation blockade, busulfan, and bone marrow, heart grafts survived indefinitely without detectable signs of chronic rejection or structural damage, even 100 days after placement of a secondary donor skin graft. We detected multilineage chimerism in peripheral blood, spleen, lymph nodes, and thymus, and peripheral deletion of donor-reactive cells was complete by day 90. These findings indicate that only the CD40/CD28 blockade chimerism induction regimen prevents both acute and chronic rejection of vascularized organ transplants. Further testing of these strategies in a preclinical large animal model is warranted.  相似文献   

12.
Ultraviolet irradiation (uvR) has been demonstrated to have profound effects on many functions of the immune system. In particular, exposure to this physical agent can alter the tissue distribution and function of a number of immunologically active cell types, even at sites remote from direct uvR exposure. The present investigation demonstrates that uvR exposure of mice induces an efferent blockade of lymphocyte egress from the peripheral lymph nodes which drain the irradiated skin, resulting in marked retention of lymphocytes. In vivo studies of this efferent blockade established that the condition appeared similar in mechanism to that induced by the administration of poly-inosinic:poly-citidylic acid, murine interferon alpha/beta and specific antigen. We were able to establish that a common mechanism in the genesis of an efferent lymphatic blockade may involve prostaglandin biosynthesis. The potential contribution of efferent blockade to the development of systemic suppression of contact hypersensitivity induced by uvR exposure is discussed.  相似文献   

13.
Experiments carried out on anesthetized dogs have shown that reperfusion of long-ischemized leg tissues is accompanied by a significant decrease of the cardiac output and myocardial contractility. Restriction of the venous return to the heart is important in the cardiac output decrease due to an increase of venous compliance and blood pooling on the peripheral circulation. The preliminary blockade of platelet-activating factor (PAF) receptors decreases degree of the cardio- and hemodynamic disturbances after reperfusion of ischemized tissues and prevents development of pulmonary hypertension. Similarity of the postreperfusion central and peripheral hemodynamic disturbances and animal responses to injection of the exogenous PAF as well as the presence of the protective effect of PAF-receptor antagonist BNo. 52021 permit concluding, that PAF takes part in the development of postischemic shock reaction and its receptor blockade can be used to prevent postreperfusion hemodynamic disorders.  相似文献   

14.
3,7-Dimethyl-1-propargylxanthine (DMPX), a caffeine analog that exhibits in vitro selectivity for A2-adenosine receptors, compared to A1-adenosine receptors, has now been investigated with respect to in vivo potency and selectivity. DMPX potently and selectively blocked the actions of the potent A2 adenosine agonist, 5'-N-ethylcarboxamidoadenosine (NECA), in DBA/2 mice, compared to blockade of the same responses elicited by the selective A1-adenosine agonist, N6-cyclohexyladenosine (CHA). DMPX was 57-fold more potent versus NECA-induced hypothermia than versus CHA-induced hypothermia and 11-fold more potent versus NECA-induced behavioral depression than versus CHA-induced behavioral depression. The hypothermia is mediated by peripheral receptors, based on blockade by 8-(p-sulfophenyl)theophylline (PSPT), while the behavioral depression is centrally mediated, based on lack of blockade by PSPT. DMPX was 28- and 15-fold more potent than caffeine in blocking peripheral and central NECA-responses, respectively. DMPX was equipotent with caffeine versus CHA-induced hypothermia and 2.5-fold more potent than caffeine versus CHA-induced behavioral depression. The motor stimulating potency of DMPX (ED50 10 mumol/kg) was slightly greater than caffeine.  相似文献   

15.
In acute experiments on anesthetized dogs under closed-chest conditions, we used the technique of double lumen catheterization of coronary vessels and peripheral vessel bed. We studied the role of endothelium-dependent relaxing factor/nitric oxide (EDRF/NO) in the development of parasympathetic coronary vasodilation after excitation of cardiac receptors. Under conditions of pharmacological stimulation of cardiac receptors of the left ventricle and short-lasting episodes of local myocardial ischemia, we also examined the effects of inhibition of NO synthesis on the development of cardiogenic depressor reflexes (hypotension and peripheral vasodilation). It was found that the reflex coronary dilatation following excitation of the cardiac (left ventricular) receptors significantly decreased after systemic NO synthase inhibition. Thus, NO production is one of the effector mechanisms of the development of coronary vessel dilatation; this conclusion is confirmed by changes in the dilatation level after blockade of this process with L-NNA (nitro-ω-L-arginine). We pioneered in demonstrating that after the blockade of NO synthesis peripheral vessel vasodilation decreases or disappeas altogether when cardiogenic reflexes are realized following pharmacological excitation of cardiac receptors with veratrine or catecholamine injections, and vasoconstrictor responses evoked by myocardial ischemia are significantly intensified. It is suggested that the influences of NO-dependent mechanisms exert a dual effect on sympathic control-mediated peripheral vasodilation during cardiogenic reflexes. Such mechanisms reduce central sympathetic tone and/or concurrently provide peripheral inhibition of neural sympathetic influences; in the latter case, NO-dependent cardiogenic reflexes play a crucial role in compensatory reactions after an injury to the heart.  相似文献   

16.
The alloimmune response against fully MHC-mismatched allografts, compared with immune responses to nominal antigens, entails an unusually large clonal size of alloreactive T cells. Thus, induction of peripheral allograft tolerance established in the absence of immune system ablation and reconstitution is a challenging task in transplantation. Here, we determined whether a reduction in the mass of alloreactive T cells due to apoptosis is an essential initial step for induction of stable allograft tolerance with non-lymphoablative therapy. Blocking both CD28-B7 and CD40-CD40 ligand interactions (co-stimulation blockade) inhibited proliferation of alloreactive T cells in vivo while allowing cell cycle-dependent T-cell apoptosis of proliferating T cells, with permanent engraftment of cardiac allografts but not skin allografts. Treatment with rapamycin plus co-stimulation blockade resulted in massive apoptosis of alloreactive T cells and produced stable skin allograft tolerance, a very stringent test of allograft tolerance. In contrast, treatment with cyclosporine A and co-stimulation blockade abolished T-cell proliferation and apoptosis, as well as the induction of stable allograft tolerance. Our data indicate that induction of T-cell apoptosis and peripheral allograft tolerance is prevented by blocking both signal 1 and signal 2 of T-cell activation.  相似文献   

17.
CD28/B7 blockade leads to exacerbated autoimmune disease in the nonobese diabetic mouse strain as a result of a marked reduction in the number of CD4(+)CD25(+) regulatory T cells (Tregs). Herein, we demonstrate that CD28 controls both thymic development and peripheral homeostasis of Tregs. CD28 maintains a stable pool of peripheral Tregs by both supporting their survival and promoting their self-renewal. CD28 engagement promotes survival by regulating IL-2 production by conventional T cells and CD25 expression on Tregs.  相似文献   

18.
Continuous beta blockade stimulates deposition of collagen in the pulmonary alveolar interstitium of adult rats. It also causes changes to the capillary endothelial cell compartment reminiscent of programmed cell death. To test whether beta blockade results in endothelial cell apoptosis, cultures of capillary endothelial cells were treated with both a wide-spectrum beta blocker and a beta-2-specific antagonist. Apoptosis was measured in these cultures using both terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling and annexin-V assays. Both forms of beta blockade stimulated programmed cell death in these cultures. To test whether the apoptotic effect of beta blockade was related to interstitial collagen deposition, capillary endothelial cells were cocultured with beta-blocked pulmonary fibroblast monolayers. Cocultured endothelial cells were substantially protected from apoptosis after beta blockade; coculture over plain tissue culture plastic or over exogenous collagen films had no effect on programmed cell death in endothelial cells. These results suggest that both pulmonary endothelial and interstitial cells are vulnerable to injury from beta blockade but that paracrine interactions between these cells may protect the peripheral lung from substantive damage.  相似文献   

19.
As interactions between peripheral chemoreceptors stimulation (PCS) and pulmonary vasomotor tone remain controversial, experiments were made in rats in order to clear up the effects of PCS on pulmonary arterial pressure (PAP). Different stimulations varying in intensities were used, in rats nervously intact (IR-rats), after vagotomy (XT-rats), after chemodenervation obtained without vagotomy (CDN not XT-rats) or with XT (CDN + XT) and finally after alpha 1-receptors blockade (P-rats = pretreated rats). The observed variations were analysed in view of disentangling reflex part of PCS from a direct activity on the pulmonary vascular bed. Ventilation, PAP and systemic blood pressure (BP) were studied in anaesthetized rats. N2 test, NaCN test, 20 s of 5% O2 inhalation and almitrine bismesylate (ALM) were used as PCS, ranged in the order of their relative intensities, from the ventilatory responses observed in IR-rats. In IR-rats, N2-and CN test produced a similar transient increase of PAP, slightly more extended than the hyperventilation. After XT, the responses were prolonged, but amplified only in CN test. Ventilatory responses disappear after CDN, but as far as pulmonary hypertension is concerned, CDN + XT is more potent than CDN without XT to reduce or even suppress them. This fact is particularly evident with ALM who is the strongest PCS used. Similar reduction of PAP rise was also produced in P-rats in which ventilatory responses remain unchanged. Prolonged hypoxic inhalation induced a progressive fall of systolic BP and of PAP. The return to normal air breathing is followed by BP restoration and a long-lasting PAP increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Deafferentation of sinoaortic baroreceptors produces a marked increase in the lability of arterial pressure that is sustained chronically. Studies reviewed in this paper were designed to determine the mechanisms responsible for generating arterial pressure lability. Pharmacological interruption of the humoral vasopressin and angiotensin systems failed to alter arterial pressure lability. In contrast, blockade of sympathetic nervous system transmission at both ganglionic and alpha-adrenergic receptor levels significantly attenuated lability. A similar effect was observed with the peripheral neurotoxin, 6-hydroxydopamine. After blockade of sympathetic transmission, a further reduction in lability was produced by blocking the renin-angiotensin or vasopressin systems. The dissociation of the level of arterial pressure from lability was achieved with parachloroamphetamine which raised arterial pressure but reduced lability. A substantial peripheral contribution to lability was obtained in experiments in which the alpha-adrenergic agonist, phenylephrine, produced a marked increase in lability in both normal and baroreceptor-denervated animals in which humoral and neural transmission were blocked. These data demonstrate that following baroreceptor deafferentation, arterial pressure lability is produced primarily by the sympathetic nervous system and secondarily by circulating humoral factors that appear to act on vascular smooth muscle to induce fluctuations in the level of arterial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号