首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY Within the last decade, gene expression patterns and neuro‐anatomical data have led to a new consensus concerning the long‐debated association between anterior limbs and neuromeres in the arthropod head. According to this new view, the first appendage in all extant euarthropods is innervated by the second neuromere, the deutocerebrum, whereas the anterior‐most head region bearing the protocerebrum lacks an appendage. This stands in contrast to the clearly protocerebrally targeted “antennae” of Onychophora and to some evidence for protocerebral limbs in fossil euarthropod representatives. Yet, the latter “frontal appendages” or “primary antennae” have most likely been reduced or lost in the lineage, leading to extant taxa. Surprisingly, a recent neuro‐anatomical study on a pycnogonid challenged this evolutionary scenario, reporting a protocerebral innervation of the first appendages, the chelifores. However, this interpretation was soon after questioned by Hox gene expression data. To re‐evaluate the unresolved controversy, we analyzed neuro‐anatomy and neurogenesis in four pycnogonid species using immunohistochemical techniques. We clearly show the postprotocerebral innervation of the chelifores, which is resolved as the plesiomorphic condition in pycnogonids when evaluated against a recently published comprehensive phylogeny. By providing direct morphological support for the deutocerebral status of the cheliforal ganglia, we reconcile morphological and gene expression data and argue for a corresponding position between the anterior‐most appendages in all extant euarthropods. Consequently, other structures have to be scrutinized to illuminate the fate of a presumptive protocerebral appendage in recent euarthropods. The labrum and the “frontal filaments” of some crustaceans are possible candidates for this approach.  相似文献   

2.
Bitsch, J. and Bitsch, C. 2010. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. —Acta Zoologica (Stockholm) 91 : 249–266 Different interpretations of the segmental composition of the head in mandibulate arthropods are critically reviewed, with particular focus on three closely associated structures: the tritocerebrum, the stomatogastric nervous system and the clypeolabrum. The main conclusions arising from the different discussions are the following. (1) Each tritocerebral ganglion has a dual composition, clearly discernable in some crustacean and hexapod species, including a dorsal portion connected with the second antennae and a ventral portion connected with the stomatogastric nervous system via the frontal ganglion. (2) The suboesophageal commissure linking the tritocerebral lobes of the two sides, can be wholly ascribed to the tritocerebral segment. (3) The stomatogastric nervous system is a morphologically autonomous system that is not fundamentally affected by head metamerization. (4) The clypeolabrum, the epistome–labrum and the hypostome are regarded as homologous formations. The clypeolabrum represents a fundamental structure of the head probably present in the arthropod ground plan. Its close spatial and developmental association with the stomodeum and its derivative, the stomatogastric nervous system, suggests that it is an anterior outgrowth of the forehead arising from a preoral territory (presegmental acron or protocerebral–ocular region?) and secondarily connected with the tritocerebrum, rather than derived from a pair of reduced appendages.  相似文献   

3.
Abstract:  Continuing debate over the evolution and morphology of the arthropod head has led to considerable interest in the relevance of the evidence from the fossil record. However, dispute over homology and even presence of appendages and sclerites in Cambrian arthropods has resulted in widely differing views of their significance. The head structures of several important taxa, Fuxianhuia , Canadaspis , Odaraia , Chengjiangocaris and Branchiocaris are redescribed, revealing the essential similarity between them. In particular, all possessed an anterior sclerite, probably followed by a large posterior, ventral sclerite that is likely to be homologous to the hypostome of trilobites. The presence of a similar feature in Sanctacaris is also possible, but less well-supported. An anterior sclerite, usually bearing eyes, as in Fuxianhuia , appears to be a widespread feature of basal arthropods. Whether or not this sclerite represents an original articulating protocerebral segment on its own is, however, open to debate.  相似文献   

4.
A new arthropod from the Lower Devonian Hunsrück Slate is described on the basis of four specimens. The body of Captopodus poschmanni comprises a head, a trunk with an anal portion. The high number of trunk appendages (≥66 segments) is unusual. The function of one pair of cupola-like structures of the head shield is unclear. The presence of large grasping appendages in the head superficially resembles the ‘short great appendages’ of other euarthropods and grasping appendages of thylacocephalans. The phylogenetic position of the arthropod cannot be determined in detail, though several morphological aspects indicate a phylogenetic position as a stem lineage representative of the Euarthropoda, the morphology of the trunk appendages seem to indicate a more advanced phylogenetic position. This new taxon underlines the exceptional diversity of arthropods within the Hunsrück Slate in comparison to other Devonian fossil sites and highlights the significance of the Hunsrück Slate for the evolution of early arthropods.  相似文献   

5.
The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.  相似文献   

6.
The evolution of segmentation in Crustacea, that is, the formation of sclerotized and jointed body somites and arrangement of somites into tagmata, is viewed in light of historical traits and functional constraints. The set of Early to Late Cambrian 'Orsten' arthropods have informed our current views of crustacean evolution considerably. These three-dimensionally preserved fossils document ancient morphologies, as opposed to purely hypothetical models and, because of the unusual preservation of larval stages, provide us with unparalleled insight into the morphogenesis of body somites and their structural equipment. The variety of evolutionary levels represented in the 'Orsten' including lobopodians, tardigrades, and pentastomids also allows phylogenetic interpretations far beyond the Crustacea. The 'Orsten' evidence and data from representatives of the Lower Cambrian Chengjiang biota in southwestern China, including phylogenetically earlier forms, form the major source of our morphology-based review of structural and functional developments that led toward the Crustacea. The principal strategy of arthropods is the simultaneous development of head somites, as expressed in a basal "head larva," and a successive addition of postcephalic somites from a preterminal budding zone with progressive maturation of metameric structures. This can be recognized in the developmental patterns of extant and fossil representatives of several euarthropod taxa, particularly crustaceans, trilobites, and chelicerates (at least basally). The development of these taxa points to an early somite-poor and free-living hatching stage. Embryonic development to a late stage within an egg, as occurring in recent onychophorans and certain in-group euarthropods, is regarded as achieved several times convergently.  相似文献   

7.
Trilobite body patterning and the evolution of arthropod tagmosis   总被引:3,自引:0,他引:3  
Preservation permitting patterns of developmental evolution can be reconstructed within long extinct clades, and the rich fossil record of trilobite ontogeny and phylogeny provides an unparalleled opportunity for doing so. Furthermore, knowledge of Hox gene expression patterns among living arthropods permit inferences about possible Hox gene deployment in trilobites. The trilobite anteroposterior body plan is consistent with recent suggestions that basal euarthropods had a relatively low degree of tagmosis among cephalic limbs, possibly related to overlapping expression domains of cephalic Hox genes. Trilobite trunk segments appeared sequentially at a subterminal generative zone, and were exchanged between regions of fused and freely articulating segments during growth. Homonomous trunk segment shape and gradual size transition were apparently phylogenetically basal conditions and suggest a single trunk tagma. Several derived clades independently evolved functionally distinct tagmata within the trunk, apparently exchanging flexible segment numbers for greater regionally autonomy. The trilobite trunk chronicles how different aspects of arthropod segmentation coevolved as the degree of tagmosis increased.  相似文献   

8.
While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.  相似文献   

9.
10.
Pycnogonid affinities: a review   总被引:2,自引:1,他引:1  
Early authors regarded Pycnogonida (sea spiders) either as aquatic arachnids, ‘degraded’ crustaceans or as some sort of intermediate form between the two. Subsequently, pycnogonids were either placed among the Chelicerata or considered as an isolated group, unrelated to other arthropods. The latter model is untenable under phylogenetic systematics and recent cladistic studies have supported one of two alternative hypotheses. The first is the traditional Chelicerata s.lat. concept, i.e. (Pycnogonida + Euchelicerata). This, however, has only one really convincing synapomorphy: chelate chelicerae. The second hypothesis recognizes (Pycnogonida + all other Euarthropoda) and has been recovered in various ‘total evidence’ studies. Morphologically some characters – the presence of gonopores on the trunk and absence of a labrum, nephridia and intersegmental tendons – support Cormogonida (Euarthropoda excluding pycnogonids). Advances in developmental biology have proposed clear interpretations of segmentation homologies. However, so far there is also a confrontation of the two hypotheses depending on whether the last walking leg segment is considered part of the prosoma. In this case pycnogonids have too many prosomal segments compared with Euchelicerata; perhaps implying they are not sister groups. Alternatively, if part of the postprosomal region, the last leg pair could correspond to the chilarial segment in euchelicerates and its uniramous state could be apomorphic with respect to other euarthropods. Molecular phylogenies need to be more rigorously analysed, better supported by data from different sources and technique‐sensitive aspects need to be explored. Chelicerata s.lat. may emerge as the more convincing model, yet even the putative autapomorphy of chelicerae needs to be treated with caution as there are fossil ‘great appendage’ arthropods in the early Palaeozoic which also have a robust, food‐gathering, pair of head limbs and which may lie on the chelicerate, or even the euarthropod, stem lineage.  相似文献   

11.
Postembryonic females and males Diaphanosoma brachyurum from Lake Glubokoe (Moscow) have 3–4 and 3 juvenile instars, respectively. Females and males of the first three postembryonic instars can be identified by the different number of setae and setal rudiments on the proximal and distal segments of the exopodite of the swimming antennae: 3 + 7; (i + 3) + 7; 4 + (i + 7), respectively (i = rudiment of seta). The subsequent instars have 4 + 8 long plumose setae on these segments, but the fourth instar has the proximal lateral seta of the distal exopod segment slightly shorter and thinner than the others. The antennules and copulatory appendages of males are instar-specific. Diaphanosomas show small increments in body length during the postembryonic molts. The largest increments (about 115 m) occur during the first or second molts. The allometric equation of Huxley (1924) was used for a comparison of the relative growth rate of different body parts. In the middle of summer, the head and swimming antennae with the body and the antennal exopodite with the antennal basipodite grow in isometry. At the same time, the branches of the swimming antennae and their setae show allometric growth: the exopodite and distal setae grow faster than the endopodite and the lateral setae, respectively.  相似文献   

12.
Among a set of small, secondarily phosphatised larval arthropods from the Upper Cambrian 'Orsten' of Sweden, described by Müller and Walossek in 1986, one form bears a remarkable resemblance to the hatching protonymph larva of extant Pantopoda. This 'larva D' shares with protonymphs their gross body form, the anteroventral mouth on a slightly off-set forehead region, the cheliceral morphology, two homeomorphic pairs of post-cheliceral limbs, and further detailed similarities. It is described herein as Cambropycnogon klausmuelleri gen. et sp. nov. and is proposed as the oldest unequivocal record of both Pycnogonida and Chelicerata. Plesiomorphic features such as a pair of rudimentary pre-cheliceral limbs and the gnathobasic basipods of the two post-cheliceral limbs distinguish it from all known larvae of extant Pantopoda and lead us to propose a phylogeny of the Pycnogonida of the form ( Cambropycnogon klausmuelleri + ( Palaeoisopus + ( Palaeopantopus + Pantopoda))). The fossil may help to resolve the long debate about the relationships of Pycnogonida to other Arthropoda and supports a (Pycnogonida + Euchelicerata) relationship within the Chelicerata. The pre-cheliceral limbs in this fossil support traditional morphological studies in which the chelicera represent the second (a2) head appendage, corresponding to the crustacean 'second antennae', and contradict recent data based on homeobox genes implying that the chelicerae are the first (a1) head appendages homologous with crustacean first antennae.  相似文献   

13.
The present paper is a critical review of data and hypotheses on the head segmental composition in chelicerates and in extinct non‐mandibulate arthropods. It successively takes into account data from morphology and embryology, from the structure of the nervous system, from palaeontology and from developmental genetics. Discussion focuses on possible homologies between the head segments and appendages in arachnomorphs and those in mandibulates. The comparative anatomical and ontogenetic data, especially those concerning the central nervous system, its connections with the stomatogastric system, and head innervation, show many similarities between the head organization of chelicerates and that of mandibulates, and lead to conclusions that contradict some of the hypotheses deduced from recent studies on developmental biology, but favour more traditional views. In particular they support the presence of a deutocerebral segment in the head region of the ground pattern of arthropods and its loss in all extant chelicerates. They also support the homology of the cheliceral ganglia with the tritocerebral ganglia of mandibulates. The possible existence of a precheliceral segment and of a presegmental acron remains open to question.  相似文献   

14.
We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic “fused” condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the “two-segmented head” in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral—arguably deutocerebral—appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and “stem bivalved” arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in “stem bivalved” arthropods, distinct in its absence of clear clustering, is found to link the morphologies of “short great appendages,” chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this pattern, however, is sensitive to the—still unclear—extent of polyphyly of the “stem bivalved” taxa.  相似文献   

15.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

16.
Chelicerates represent a basal arthropod group, which makes them an excellent system for the study of evolutionary processes in arthropods. To enable functional studies in chelicerates, we developed a double-stranded RNA-interference (RNAi) protocol for spiders while studying the function of the Distal-less gene. We isolated the Distal-less gene from the spider Cupiennius salei. Cs-Dll gene expression is first seen in cells of the prosomal segments before the outgrowth of the appendages. After the appendages have formed, Cs-Dll is expressed in the distal portion of the prosomal appendages, and in addition, in the labrum, in two pairs of opisthosmal (abdominal) limb buds, in the head region, and at the posterior-most end of the spider embryo. In embryos, in which Dll was silenced by RNAi, the distal part of the prosomal appendages was missing and the labrum was completely absent. Thus, Dll also plays a crucial role in labrum formation. However, the complete lack of labrum in RNAi embryos may point to a different nature of the labrum from the segmental appendages. Our data show that the expression of Dll in the appendages is conserved among arthropods, and furthermore that the role of Dll is evolutionarily conserved in the formation of segmental appendages in arthropods.  相似文献   

17.
Recent gene expression data suggest that the region on which the onychophoran antenna is situated corresponds to the anteriormost, apparently appendage-less region of the arthropod head. The fate of the onychophoran antenna (or any appendage-like precursor), also called the primary antenna, has been discussed intensively, and there are conflicting suggestions that this anteriormost non-segmental appendage gave rise either to the arthropod labrum or, alternatively, to the so-called frontal filaments found in certain crustaceans. Our data on early axogenesis in anostracan crustaceans show that even in the earliest embryos, before the antennula and antennal nerves are developed, the circumoral anlagen of the brain display very prominent nerves which run into the frontal filament organ (also known as the cavity receptor organ). This situation resembles the development of the antennal nerves in onychophorans, which leads us to conclude that the frontal filaments are indeed homologous to the primary antenna. Frontal filaments also appear to be more common in crustaceans than previously thought, removing the need for a complicated scenario of transformation from a primary antenna into the labrum.  相似文献   

18.
The origin of crustaceans: new evidence from the Early Cambrian of China.   总被引:7,自引:0,他引:7  
One of the smallest arthropods recently discovered in the Early Cambrian Maotianshan Shale Lagerstätte is described. Ercaia gen. nov. has an untagmatized trunk bearing serially repeated biramous appendages (long and segmented endopods and flap-like exopods), a head with an acron bearing stalked lateral eyes and a sclerite and two pairs of antennae. The position of this 520 million-year-old tiny arthropod within the Crustacea is supported by several anatomical features: (i) a head with five pairs of appendages including two pairs of antennae, (ii) highly specialized antennae (large setose fans with a possible function in feeding), and (iii) specialized last trunk appendages (segmented pediform structures fringed with setae). The segmentation pattern of Ercaia (5 head and 13 trunk) is close to that of Maxillopoda but lacks the trunk tagmosis of modern representatives of the group. Ercaia is interpreted as a possible derivative of the stem group Crustacea. Ercaia is likely to have occupied an ecological niche similar to those of some Recent meiobenthic organisms (e.g. copepods living in association with sediment). This new fossil evidence supports the remote ancestry of crustaceans well before the Late Cambrian and shows, along with other fossil data (mainly Early Cambrian in China), that a variety of body plans already coexisted among the primitive crustacean stock.  相似文献   

19.
Reflections on arthropod evolution   总被引:7,自引:0,他引:7  
Recent claims that arthropods are monophyletic because all have jaws composed of a five-segmented coxa, that the groundplan of arthropod legs has no less than 11 segments, that crustaceans, chelicerates and insects share a 'polyramous arthropod leg', and that the labrum is formed from a pair of legs, are rejected on factual grounds. It is suggested that the earliest arthropod appendages were unsegmented. Putative homologies among mandibulate arthropods are considered. Striking as some of these are, a good case can be made for their convergent evolution, and the concept of the Mandibulata is rejected. Suggested separate ancestries of crustaceans and tracheates are compared. A realistic explanation of radiation from a common arthropod ancestor remains illusory. A polyphyletic concept of arthropod evolution from soft-bodied, segmented, haemocoele-possessing, non-annelid worms is elaborated. The degree of convergence demanded is amply matched by proven examples of the phenomenon. If the earliest arthropods lacked compound eyes, and these were acquired several times, as they have been at least twice in non-arthropods, several otherwise intractable problems are resolved. Sequence comparisons provide a powerful tool for determining relationships but seem powerless to establish whether arthropods are monophyletic, or polyphyletic in the manner envisaged here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号