首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

2.
The regulation of genetic competence in Bacillus subtilis   总被引:23,自引:7,他引:16  
  相似文献   

3.
Sulfur metabolism of Bacillus subtilis   总被引:6,自引:0,他引:6  
  相似文献   

4.
5.
The regulation of the butanediol cycle in Bacillus subtilis   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

8.
9.
10.
11.
In Bacillus subtilis separate sets of genes are implicated in the transport and metabolism of the amino sugars, glucosamine and N‐acetylglucosamine. The genes for use of N‐acetylglucosamine (nagAB and nagP) are found in most firmicutes and are controlled by a GntR family repressor NagR (YvoA). The genes for use of glucosamine (gamAP) are repressed by another GntR family repressor GamR (YbgA). The gamR‐gamAP synton is only found in B. subtilis and a few very close relatives. Although NagR and GamR are close phylogenetically, there is no cross regulation between their operons. GlcN6P prevents all binding of GamR to its targets. NagR binds specifically to targets containing the previously identified dre palindrome but its binding is not inhibited by GlcN6P or GlcNAc6P. GamR‐like binding sites were also found in some other Bacilli associated with genes for use of chitin, the polymer of N‐acetylglucosamine, and with a gene for another GamR homologue (yurK). We show that GamR can bind to two regions in the chi operon of B. licheniformis and that GamR and YurK are capable of heterologous regulation. GamR can repress the B. licheniformis licH‐yurK genes and YurK can repress B. subtilis gamA.  相似文献   

12.
Periplasmic nucleoside diphosphate sugar hydrolase from Bacillus subtilis   总被引:6,自引:0,他引:6  
J Mauck  L Glaser 《Biochemistry》1970,9(5):1140-1147
  相似文献   

13.
14.
15.
16.
Acetate and other short chain n-fatty acids (C(1)-C(6)) inhibit strongly the uptake of l-serine or other l-amino acids but inhibit only weakly that of alpha-methylglucoside or fructose, whether measured in whole cells of Bacillus subtilis or in membrane vesicles that have been energized with reduced nicotinamide adenine dinucleotide (NADH), l-alpha-glycerol phosphate, or ascorbate plus phenazine methosulfate. The acetate inhibition is noncompetitive, as was shown for l-alpha-aminoisobutyric acid uptake by whole cells and for l-serine uptake by membrane vesicles. In membrane preparations, neither NADH oxidation nor the reduction of cytochromes by NADH are affected by fatty acids. All of these effects are similar to those of 2, 4-dinitrophenol. It is concluded that the fatty acids "uncouple" the amino acid carrier proteins from the cytochrome-linked electron transport system (to which they may be coupled via protein interaction or via a cation gradient).  相似文献   

17.
18.
Germanium dioxide is found to increase the frequencies of the genetical transformation in Bacillus subtilis 30-40 fold. The increased frequency of transformation was registered in Sil- mutant in contrast to Sil+ strain having the decreased one. Bacillus megatherium strain KU-2 and Bacillus oligonitrophilus KU-1 were isolated from soil. These strains possess better ability to utilize the orthoclase and biotite. Germanium dioxide did not induce the transformation frequencies increase in these strains. Sil mutant of Bacillus oligonitrophilus demonstrated no competence to transformation.  相似文献   

19.
20.
Serine biosynthesis and its regulation in Bacillus subtilis   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extracts of Bacillus subtilis strains GSY and 168 convert (14)C-phosphoglycerate to (14)C-serine phosphate and (14)C-serine. These reactions indicate a functional phosphorylated pathway for serine biosynthesis in these cells. The addition of serine to the incubation mixture inhibited the formation of both radioactive products. Extracts of mutant strains that require serine for growth lacked the capacity to synthesize serine phosphate, confirming that the phosphorylated pathway was the only functional pathway available for serine synthesis. Serine phosphate phosphatase and phosphoglycerate dehydrogenase activity were demonstrated in cell extracts, and the phosphoglycerate dehydrogenase was shown to be inhibited specifically by l-serine. The extent of serine inhibition increased when the temperature was raised from 25 to 37 C, and the thermal stability of the enzyme was enhanced by the presence of the inhibitor serine or the coenzyme reduced nicotinamide adenine dinucleotide. At 37 C the curve representing the relationship between phosphoglycerate concentration and enzyme velocity was biphasic, and the serine inhibition which was competitive at low substrate concentrations became noncompetitive at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号