共查询到20条相似文献,搜索用时 0 毫秒
1.
A A Akhrem V N Bara? L A Eroshevskaia A I Einchenko 《Biokhimii?a (Moscow, Russia)》1979,44(10):1819-1825
It was shown that La3+ ions are capable of precipitating the glucocorticoid receptor from rat liver. Treatment of cytosol containing either free receptor or the hormonereceptor complex with 0,005 M La(NO3)3 results in recptor precipitation. The pellet is readily dissolved in buffer with EDTA. Transcortin and transcortin-like proteins are not affected by La3+ ions. The lanthanium-treated receptor does not lose its ability to bind DNA and chromatin in vitro. It is suggested that precipitation by La3+ ions can be used for separation of the receptor from transcortin and transcortin-like proteins as well as for evaluation of binding parameters for steroid-receptor complexes in rat liver cytosol. 相似文献
2.
Purification of the glucocorticoid receptor from rat liver cytosol. 总被引:12,自引:0,他引:12
O Wrange J Carlstedt-Duke J A Gustafsson 《The Journal of biological chemistry》1979,254(18):9284-9290
The [3H]-triamcinolone acetonide-labeled glucocorticoid receptor from rat liver cytosol was purified to 85% homogeneity according to sodium dodecyl sulfate gel electrophoresis. It consisted of one subunit with a molecular weight of 89,000 and had one ligand-binding site per molecule. The purification involved sequential chromatography on phosphocellulose, DNA-cellulose twice, and Sephadex G-200. Between the two chromatography steps on DNA-cellulose, the receptor was heat activated. The receptor was affinity eluted from the second DNA-cellulose column with pyrodixal 5'-phosphate. The purification achieved in the first three chromatographic steps varied between 60 and 95% homogeneity in different experiments. After chromatography on the second DNA-cellulose column, the steroid.receptor complex had a Stokes radius of 6.0 nm and a sedimentation coefficient of 3.4 S in 0.15 M KCl. In the absence of KCl, the sedimentation coefficient was 3.6 S. After concentration on hydroxylapatite, the steroid.receptor complex was analyzed by isoelectric focusing in polyacrylamide gel. The radioactivity was shown to focus together with the major protein band with pI 5.8. Following limited proteolysis with trypsin, the radioactivity, together with the major protein band, focused at pI 6.2 as previously described for the unpurified steroid.receptor complex. 相似文献
3.
Phosphorylation of rat liver glucocorticoid receptor 总被引:3,自引:0,他引:3
Rat liver glucocorticoid-receptor complex (GRc) was purified 2000-fold by a combination of methods including (NH4)2SO4-fractionation and phosphocellulose and DNA-cellulose chromatography. The purified glucocorticoid receptor preparation contained a major peptide of Mr = 90,000 and the GRc sedimented as 4 S in 5-20% sucrose gradients. An additional peptide of Mr = 45,000 (45K) was also observed. Some preparations yielded only the Mr = 90,000 (90K) peptide suggesting that the 45K peptide may be a proteolyzed portion of the 90K protein. The purified GRc was incubated with [gamma-32P]ATP in the presence of cAMP-dependent kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the above preparation revealed the presence of two 32P-containing bands with apparent Mr = 90,000 and 45,000. The 32P incorporation was dependent on the availability of divalent cation (Mg2+). GRc in cytosol labeled with [3H]dexamethasone mesylate and purified as above co-migrated with 32P-containing bands. GRc was also purified from cytosol obtained from livers of rats injected with [32P]orthophosphate. Both 32P and 3H bands were associated with 90K and 45K peptides. Our results indicate that rat liver glucocorticoid receptor is a phosphoprotein and that both the phosphorylated peptides 90K and 45K also contain the steroid and the DNA binding regions of the glucocorticoid receptor. 相似文献
4.
This investigation used cytosol fraction of rat liver to examine the effects of insulin (INS) on functional properties of glucocorticoid receptor (GR). Male Wistar rats (220-250 g b.wt.) were injected with INS (50 microg/200 g b.wt, i.p.) and 18 h after INS administration used for experiments. INS-stimulated dissociation of G-R complexes was significantly increased by 133% compared to control level. However, INS treatment significantly stimulated stability of GR protein by 138% above control value. Furthermore, results show that INS stimulated activation of formed cytosol [3H] TA-R complexes by 143% in respect to control. [3H]TA-R complexes from INS treated animals could be activated and accumulated at higher rate in cell nuclei of control animals. The physiological relevance of the data was confirmed by INS-related stimulation of Tryptophan oxigenase (TO) activity. It was observed that INS stimulated TO activity while INS injected to adrenalectomized rats, exhibited less effects compared to control. The results indicate that a glucocorticoid hormone (CORT) enhances INS induced stimulation of TO activity, as evidenced by enhanced enzyme activity. Presented data suggest: that INS treatment leads to modifications of the GR protein and the nuclear components and that INS activates the rat liver CORT signaling pathway which mediates, in part, the activity of TO. 相似文献
5.
Characterization of the purified activated glucocorticoid receptor from rat liver cytosol 总被引:19,自引:0,他引:19
O Wrange S Okret M Radoj?i? J Carlstedt-Duke J A Gustafsson 《The Journal of biological chemistry》1984,259(7):4534-4541
The activated glucocorticoid receptor (GR) from rat liver cytosol was purified by sequential chromatography on DNA-cellulose and DEAE-Sepharose. Analysis by sodium dodecyl sulfate-gel electrophoresis demonstrated a main band with Mr = 94,000 (94K band). Two minor bands with Mr = 79,000 (79K band) and 72,000 (72K band) were also seen in this preparation. Photoaffinity labeling showed that the hormone is bound to the 94K and 79K components but not to the 72K component. Immunoblotting using antibodies raised against the 94K protein demonstrated cross-reactivity between the 94K and 79K components but not with the 72K species. The 72K species could be partially separated from the 94K and 79K components by density gradient centrifugation. Limited proteolysis of the purified GR with trypsin or alpha-chymotrypsin led to degradation of the 94K and 79K components and appearance of a 39K fragment which still retained the hormone and could be bound to DNA-cellulose. The 72K component was not affected by digestion with trypsin or alpha-chymotrypsin. However, chromatography on DNA-cellulose of the alpha-chymotrypsin-treated GR resulted in elution of the 72K component in the flow-through of the column while the 39K fragment was retained on the column and eluted with 0.18 M NaCl. In the control experiment where no alpha-chymotrypsin treatment was performed, the 72K component could not be detected in the flow-through fraction but was eluted together with the 94K and 79K components at 0.18 M NaCl. These results suggest that the 72K protein might be bound to the 94K and/or 79K component. The 39K fragment did not bind antibodies raised against the 94K protein. The 39K fragment was further degraded by trypsin but not by alpha-chymotrypsin to a 27K and a 25K fragment while both still retained the ligand. These data obtained with limited proteolysis of the purified GR are in agreement with previous findings on proteolysis of the GR in crude cytosol (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865; Carlstedt-Duke, J., Okret, S., Wrange, O., and Gustafsson, J.-A. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4260-4264). 相似文献
6.
A L Unger R Uppaluri S Ahern J L Colby J L Tymoczko 《Molecular endocrinology (Baltimore, Md.)》1988,2(10):952-958
We have reported that the 7-8S form of the rat liver glucocorticoid receptor is associated with RNA. Whether the unactivated 9-10S form of the glucorticoid receptor is also associated with RNA is less clear. Here we provide evidence that the unactivated 9-10S receptor is indeed associated with RNA. Unactivated 9-10S receptor was partially purified by diethylaminoethyl (DEAE)-cellulose chromatography in the presence of molybdate, an activation inhibitor. This preparation was then bound to BuGR-2, a mouse monoclonal antibody of the immunoglobulin G (IgG)-2 class to the rat liver glucocorticoid receptor, or to nonspecific mouse IgG-2. The antibody-antigen complex was then bound to protein A sepharose and washed to remove extraneous RNA. When the receptor was dissociated from the antibody and the RNA extracted and end-labeled, a distinct band of approximately 170 nucleotide (nt) was found that was specific for the BuGR-2 purified receptor. This band could also be found in DEAE-cellulose receptor that had been isolated from sucrose gradients. The DEAE-cellulose receptor was then cross-linked with formaldehyde before mixing with BuGR-2 in order to permit more vigorous washing of the antigen-antibody complex. In addition to the 170 nt RNA band, another distinct band at approximately 400 nt was seen that was specific to the BuGR-2 derived isolate. These results provide evidence that the 9-10S form of the glucocorticoid receptor from rat liver is associated with RNA. 相似文献
7.
Subunit composition of the molybdate-stabilized non-activated glucocorticoid receptor from rat liver 总被引:1,自引:0,他引:1
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000). 相似文献
8.
T Nemoto Y Ohara-Nemoto M Ota 《Biochemical and biophysical research communications》1985,131(3):1139-1145
Nontransformed glucocorticoid receptor stabilized with sodium molybdate exists as the heterogeneous forms which have slight differences in net charges and sedimentation coefficients. These differences could be detected by sequential analyses with DEAE-Sephacel chromatography and glycerol gradient centrifugation. The heterogeneity in the nontransformed receptor appears to be caused by the association of an acidic component(s) with the transformed receptor. 相似文献
9.
ATP-dependent activation of glucocorticoid receptor from rat liver cytosol. 总被引:1,自引:3,他引:1 下载免费PDF全文
The glucocorticoid--receptor complex from freshly prepared rat liver cytosol is in a non-activated form, with very little affinity to bind to isolated nuclei. When such preparations were incubated with 5--10 mM-ATP at 4 degrees C, the receptor complex acquired the properties of an 'activated' transformed form, which readily bound to nuclei, ATP--Sepharose, phosphocellulose and DNA--cellulose. This transformation was comparable with the activation achieved by warming the steroid--receptor complex at 23 degrees C. The effect of ATP was specific, as it was more effective than ADP, whereas AMP had no such effect on activation. The process of receptor activation was sensitive to the presence of 10 mM-sodium molybdate; the latter blocked activation by both ATP and heat. Bivalent cations had no observable effect on the receptor activation at low temperature, but they decreased the extent of activation by ATP. The steroid-binding properties of glucocorticoid receptor remained intact under the above conditions. However, a significant increase in steroid binding occurred when ATP was preincubated with cytosol receptor before the addition of [3H]triamcinolone acetonide. ATP also stabilized the glucocorticoid--receptor complexes at 23 degrees C. These results suggest a role for ATP in receptor function and offer a convenient method of studying the activation process of glucocorticoid receptor under mild assay conditions. 相似文献
10.
《Journal of steroid biochemistry》1988,29(1):127-133
The nontransformed glucocorticoid receptor (GR) from rat liver was found to bind to protamine-Sepharose and could be recovered by a salt gradient without a change in molecular configuration. The nontransformed GR also bound to arginine-Sepharose, but the transformed GR did not bind to either resin. Ligand-free GR interacted with both resins and was eluted without loss of its steroid binding ability. The bindings of GR to protamine- and arginine-Sepharose were saturable. The apparent dissociation constants of GR on protamine-Sepharose varied from 0.34 nM (−molybdate) to 0.68 nM (+10 mM molybdate) and those on arginine-Sepharose were 1.99 nM (− molybdate) and 0.65 nM (+ 10 mM molybdate), respectively. The maximum binding capacity was achieved by arginine-Sepharose in the absence of molybdate. Higher salt concentrations (0.5 M NaCl) were required to elute GR from protamine-Sepharose than from arginine-Sepharose (approx 0.03 M NaCl). However, the effectiveness of several salts for the elution of GR was consistent in both resins as follows; MgCl2 = CaCl2 = Na2WO4 > (NH4)2SO4 = Na2MoO4 > arginine-HCl > lysine-HCl > KCl = NaCl. These results suggest that GR interacts with arginine residues in protamine. Chromatography using these resins resulted in 7–10-fold purification of occupied and unoccupied nontransformed GRs. 相似文献
11.
12.
Ammonium sulfate precipitation has been used for the separation of bound and free steroids in rat prostate and mouse kidney cytosol equilibrated with tritiated androgens. A high affinity, low capacity binding protein has been identified in the 35% saturation precipitate. Biochemical and physiological data indicate that this protein is identical with the previously described 8-10 S androgen receptor. It has been demonstrated that this receptor protein binds 17 beta - hydroxy-5alpha-androstan-3-one (DHT) and testosterone in both tissues. The apparent dissociation constant (Kd) of the prostatic receptor for DHT and of the renal receptor for testosterone is 1-2 nM. The number of binding sites equals 57 and 23 fmoles/mg protein in prostate and kidney respectively. Dterminations of apparent inhibition constants (Ki) for 26 steroidal and non-steroidal compounds suggest that the binding sites in these tissues is similar or identical. 相似文献
13.
A Weisz G A Puca M T Masucci C Masi R Pagnotta A Petrillo V Sica 《Biochemistry》1984,23(23):5393-5397
When rat liver cytosol containing [3H]dexamethasone-glucocorticoid receptor complex is exposed to immobilized heparin (Sepharose-heparin; Seph-hep) the steroid receptor complex binds to the substituted Sepharose avidly [Kd = 3.5 (+/- 1.7) X 10(-10) M], and 80-90% of the receptor present is adsorbed to the solid phase after 40 min at 0 degree C. The binding is enhanced by Mn2+ (10 mM) and Mg2+, whereas Ca2+ and Sr2+ are ineffective. Sodium molybdate (10 mM) does not influence the reaction but enhances receptor stability. Moreover, binding of the receptor to Seph-hep is dependent on the ionic strength of the medium, because binding is totally reversed by 300 mM KCl. The bound [3H]dexamethasone-receptor complex can be recovered from Seph-hep with solutions (4 mg/mL) of heparin (95% release), dextran sulfate (88%), and chondroitin sulfate (63%); total calf liver RNA is less effective (9%), whereas dextran, D-glucosamine, N-acetyl-D-glucosamine, D-glucuronic acid, and sheared calf thymus DNA are totally ineffective (less than 3%). Both "native" and temperature "transformed" forms of the glucocorticoid receptor interact with immobilized heparin. These results strongly suggest that the receptor site that binds heparin is distinct from that binding DNA. An immediate application of this newly found ability of the glucocorticoid receptor to interact with heparin is the use of Seph-hep for affinity chromatography purification of the glucocorticoid receptor. A purification of 10-fold, with a recovery of 55-65%, can be achieved by using either 4 mg/mL heparin or 300 mM KCl to elute [3H]dexamethasone-receptor bound to the resin. 相似文献
14.
Monoclonal antibodies against the 90 000 mol. wt. form of the activated rat liver glucocorticoid receptor were generated from mice immunized with a partially purified receptor preparation. The screening assay was based on the precipitation of liver cytosol, labelled with [3H]triamcinolone acetonide, with monoclonal antibodies bound to immobilized rabbit anti-mouse IgG. Out of 102 hybridomas obtained, 76 produced immunoglobulin and eight of them were found to react with the receptor molecule. Only one of the positive clones secreted IgG whereas the other seven produced IgM. The complexes of receptor and antibodies were identified by sucrose density gradient centrifugation. All seven monoclonal antibodies tested reacted with the 90 000 mol. wt. form of the receptor but not with the 40 000 mol. wt. form that contains the steroid and DNA binding domains. None of the monoclonal antibodies interfered with the binding of the receptor to DNA cellulose, thus suggesting that the antigenic determinants are located in a region of the receptor that is not directly implicated in either steroid binding or DNA binding. These antigenic determinants were common to glucocorticoid receptors from several tissues of the rat, whereas glucocorticoid receptors from other species react only with some of the antibodies. 相似文献
15.
The molybdate-stabilized GHRC was isolated from rat liver cytosol with a 9000-fold purification and 46% yield. The major purification step was achieved using an affinity matrix consisting of an agarose support coupled to a dexamethasone ligand via an aliphatic spacer arm. Spacer arms containing disulfide bridges were found to be unsuitable due to their instability in cytosol. To reduce the non-specific binding properties of the affinity matrix, underivatized amino groups were acetylated, since the receptor was found to bind avidly to such groups thus evading elution by the ligand. Sodium molybdate present during biospecific elution from the gel stabilized the steroid-binding activity of the receptor. The use of denaturing and sulfhydryl modifying reagents (NaSCN, DMSO, Mersalyl) during elution led to partial or complete irreversible loss of steroid-binding activity of the unoccupied receptor. Efficient biospecific elution occurred at competing concentration of high affinity steroid in the presence of sodium molybdate. The ligand specific eluate was further purified by DEAE-Sephacel chromatography resulting in additional purification of 3.2-fold. The GHRC eluted from the DEAE-Sephacel column at a salt concentration characteristic of the untransformed GHRC. Molybdate was removed from the purified untransformed GHRC in the ligand eluate by DEAE-Sephacel chromatography in the absence of molybdate, for subsequent heat transformation. 相似文献
16.
It has previously been documented that cadmium displays high affinity for protein thiol groups and induces an impairment of
glucocorticoid receptor (GR) cellular functions. The present study examined the possibility that cadmium exerts these effects
on GR activity by disturbing the receptor's redox equillibrium. To that end, the influence of cadmium on the rat liver GR
potential to form intramolecular and intermolecular disulfide bonds under nonreducing conditions and under oxidizing conditions
produced by the addition of hydrogen peroxide (H2O2) to the cytosol was examined by nonreducing SDS-PAGE and immunoblotting. The results show that cadmium inhibits formation
of disulfide bonds within the GR both in the absence and in the presence of H2O2. The creation of intermolecular disulfide linkages between the apo-GR and associated heat shock proteins Hsp90 and Hsp70,
which was evident in the presence of H2O2, was also significantly impaired after cadmium administration. These observations are consistent with the assumption that
cadmium affects the redox state of the receptor, possibly by binding to its sulfhydryl groups.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
Gordana Mati Jasmina Kipi Biljana Risti Jadranka Dundjerski Divna Trajkovi 《Cell biology international》1995,19(3):203-213
A mild whole body hyperthermic stress causes a rapid and reversible reduction of rat liver glucocorticoid receptor (GR) binding capacity and affects the stability of the GR-DNA complexes formed after thermal transformation of the receptor. These changes appear to be physiologically relevant, since they are accompanied by a decrease in dexamethasone induction of hepatic tyrosine aminotransferase (TAT). In spite of the decreased rate of the GR degradation in liver cytosol of hyperthermic as compared to control rats, the total amount of the GR and its proteolytic products recognized by BuGR2 monoclonal antibody was found to be lower in the former cytosol, but higher in the respective nuclei. 相似文献
18.
Molybdate-stabilized nonactivated rat liver glucocorticoid receptor (GR) was purified to near homogeneity using a biospecific affinity adsorbent, Bio Gel A 0.5 m and DEAE-Sephacel. The purified GR sedimented in the 9-10S region in 5-20% sucrose gradients containing 0.10M KCl and 20mM Na2MoO4. SDS-polyacrylamide gel electrophoresis revealed a major single band with an apparent molecular weight of 90,000 +/- 2,000. Affinity labeling of GR with [3H]-dexamethasone mesylate showed association of the radioactivity with a peptide of 90,000 molecular weight. Purified receptor preparation was dialyzed to remove molybdate and was incubated with different protein substrates in the presence of 50 microM [gamma-32P]-ATP and divalent cations. Radioactive phosphate from [gamma-32P]-ATP was seen to be incorporated into calf thymus histones, turkey gizzard myosin light chain kinase and rabbit skeletal muscle kinase in the presence of Mg2+ and Ca2+ ions. Addition of steroid ligand exogenously to the reaction mixture appeared to increase the extent of protein phosphorylation. No autophosphorylation of GR was evident under the above conditions. The data suggest that purified rat liver GR displays protein kinase activity. 相似文献
19.
Stability-, equilibrium- and kinetic binding parameters, transformation rate and sedimentation properties of liver cytosol glucocorticoid receptor from insulin-treated rats were studied. 40% elevation of cytosolic glucocorticoid binding and a lower affinity of the receptor for ligand were observed in hypoglycemic rats as compared to the controls. A small but significant decrease of [3H]triamcinolone acetonide-receptor complexes association rate and an increase of dissociation rate were also found. The rate and the extent of activation of the complexes from insulin-treated rats were somewhat higher compared to the controls, and the complexes from both groups showed higher affinity for the nuclei isolated from insulin-treated animals. Mixing experiments suggested that insulin treatment lead to alterations at the level of both the receptor protein and the nuclear binding sites. Sedimentation properties of transformed and untransformed receptor remained unchanged upon insulin treatment. The physiological relevance of the data was confirmed by hypoglycemia-related stimulation of tyrosine aminotransferase induction by dexamethasone. 相似文献
20.
Manjapra Variath Govindan 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,631(2):327-333
The rat liver nuclear glucocorticoid receptor has a molecular weight of 90 000. Using antibody bound to the stationary matrix, the cytosol and nuclear glucocorticoid receptors from rat liver were purified. The translocation of glucocorticoid receptor from rat liver cytosol into the nucleus was studied using immunoaffinity chromatography. Immediately after the intraperitoneal injection of rats with the hormone, the receptor translocation started and was complete within 10 min. The 90 000 dalton nuclear receptor component is identical to the 90 000 dalton cytosol component. They have identical molecular weights in the same gel electrophoresis system and produce identical peptide fragments after digestion with Staphyolococcal aureus V8 protease. The receptor component enriched by immunoaffinity chromatography from cytosol of adrenalectomised rats contained mainly a 45 000 dalton component. 相似文献