首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The hydrophobicity of the nontransformed and transformed androgen receptor from rat submandibular gland and heat shock protein 90 (hsp90) from rat submandibular gland and liver was characterized by using high-performance hydrophobic-interaction chromatography on TSK gel Ether-5PW. In the absence of molybdate, cytosol [3H]R1881-androgen receptor complexes were mainly eluted in the 1.3 M region (Peak 1) with a small peak in the 0.8 M region (Peak 2) of a descending salt gradient (2 to 0 M) of ammonium sulfate. In the presence of molybdate, Peak 2 was predominant. When labeled-cytosol was applied after being heated at 25 degrees C for 30 min, a third peak (Peak 3) at around 0.64 M ammonium sulfate was newly observed. Peaks 2 and 3 were observed, while Peak 1 completely disappeared with the labeled-cytosol precipitated at 40% saturated ammonium sulfate. The Stokes radius of Peak 1 was 7 nm, and of Peak 2 was 8 nm. Both peaks were retained poorly by DNA-cellulose but bound rather well to DEAE-cellulose. These results suggest that these two peaks represent the nontransformed receptor, indicating that there are isoforms of the nontransformed androgen receptor which are distinguished by their hydrophobic properties and Stokes radii. Peak 3 had a Stokes radius of 5 nm and preferentially bound to DNA-cellulose, suggesting that this peak corresponds to the transformed receptor. These results indicated that the transformation of the androgen receptor accompanies the enrichment of the hydrophobicity of the receptor molecule. Hsp90 purified from rat livers and hsp90 in the cytosol both from livers and submandibular glands were eluted from Ether-5PW at 0.8 M ammonium sulfate, at almost the same position as Peak 2. This finding suggests that the enrichment of hydrophobicity on transformation is due to dissociation of hsp90 from the nontransformed androgen receptor.  相似文献   

2.
Dialysis induced transformation of cytosol androgen receptor from mouse submandibular gland. On DEAE-Sephacel chromatography, this dialyzed [3H]methyltrienolone receptor complex was eluted at 0.10 M KCl which was lower than 0.25 M KCl required to elute the nontransformed androgen receptor complex, but higher than 0.05 M KCl required to elute the heat transformed receptor. On glycerol density gradient centrifugation, the dialysis transformed receptor complex shifted its sedimentation coefficient to 6 S from 8 S of the nontransformed condition, whereas the heat transformed receptor was sedimented at 4 S. Molybdate inhibited the dialysis-induced transformation on DEAE-Sephacel chromatography. The charge and the molecular size of dialysis-induced transformed receptor complex were different from those of heat-induced transformed receptor complex.  相似文献   

3.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

4.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

5.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

6.
Previous studies have shown that the exposure of molybdate-stabilized nontransformed glucocorticoid receptor (GR) of the chick embryonic neural retina to 0.4 M KCl dissociated the 9.5 S complex to a 5 S GR complex, which is an intermediate state in GR transformation. The present study was designed to characterize the 5 S GR complex. It shows that molybdate-stabilized nontransformed 9.5 S GR complex and 5 S GR interact with monoclonal antibodies (MAb) directed against 90 kDa heat shock protein (hsp90), as evidenced by the increase in the sedimentation velocity of these GR-complexes. Electrofocusing of the partially purified molybdate-stabilized nontransformed GR, prepared from [32P]-labeled neural retinas, and of the 5 S GR (derived from molybdate-stabilized preparation) showed that nontransformed GR complex, which has an apparent pI (pI') value of 5.0 +/- 0.2, and 5 S GR, which was resolved in a major peak with a pI' value of 5.8, are phosphorylated. Partially purified 5 S GR, cleared of molybdate and exposed to 25 degrees C, was resolved by electrofocusing into two phosphorylated fractions, one with a pI' value of 6.5, representing the monomeric GR form and the other with a pI' value of 5.1, apparently representing the acidic hsp90. The dissociation of hsp90 from the molybdate-cleared 5 S heterodimer seems to account for the decrease in the negative net charge of 5 S GR from pI' 6.5. Monomeric GR, derived from a molybdate-cleared, partially purified GR preparation, by the exposure to 25 degrees C, did not retain glucocorticoid-binding activity. Molybdate-stabilized 5 S GR was apparently re-assembled into the oligomeric nontransformed state when the salt concentration was reduced. This phenomenon was evident under the low-salt conditions of electrofocusing, by the shift in pI' value of GR from 5.8 to 5.0; and in glycerol density gradients containing 0.15 M KCl, by the shift in the sedimentation of the GR complex from 5 S to 9.5 S.  相似文献   

7.
Male and female rat thymic cytosol contained specific androgen receptor. The apparent dissociation constants (Kd) were 2.4 nM in males and 2.5 nM in females, and the number of binding sites (NBS) were 23.7 fmol/mg protein in males and 34.2 fmol/mg protein in females. Transformation of receptor to the DNA binding state was achieved by heat or KCl treatment of [3H]R1881-receptor complex, and the characteristics of transformed and nontransformed receptors were investigated. The nontransformed androgen-receptor complex eluted at 0.20-0.25 M KCl from DEAE-Sephacel and sedimented at 9.1 S and its molecular weight was 255,000 on agarose gel chromatography, while the transformed receptor complex eluted at 0.03-0.15 M KCl with a broad peak and sedimented at 4.5 S and its molecular weight was 80,000-85,000. The minicolumn binding assay revealed that approximately 57% of the total receptor complexes bound to DNA-cellulose following heat treatment (20 degrees C, 1 h). Castration exerted no effect on the physicochemical properties of cytosol androgen receptor, but it increased the number of binding site to the female level.  相似文献   

8.
Rat submandibular gland cytosol contained androgen receptor which had a single class of specific binding and an apparent dissociation constant of (1.1-1.2) X 10(-9) M. The process of transformation was investigated by a slightly modified minicolumn method in which the transformed receptor complexes were separated from the nontransformed receptor and meroreceptor. 10 mM ATP or pyrophosphate at 0 degrees C induced transformation of androgen receptor as did heat or salt treatment. 20 mM of sodium molybdate completely inhibited transformation that resulted from ATP, heat or salt treatment. The nontransformed androgen receptor complexes sedimented at 8 S and eluted at 250-260 mM KCl from DEAE-Sephacel, and its molecular weight was found to be 220 000 on Sephacryl S300 gel chromatography. On the other hand, the transformed androgen receptor complexes sedimented at 4.1-4.3 S (ATP or KCl treatment) or 3.5-3.8 S (heat treatment) and eluted at 60-80 mM KCl from DEAE-Sephacel. The molecular weight of the transformed androgen receptor complexes was 80 000-85 000 (ATP or KCl treatment) or 70 000-80 000 (heat treatment). These results suggest that the transformation of androgen-receptor complexes from rat submandibular gland was induced by the subunit dissociation and that salt bridges may be involved in the subunit interaction.  相似文献   

9.
The nontransformed glucocorticoid receptor (GR) from rat liver was found to bind to protamine-Sepharose and could be recovered by a salt gradient without a change in molecular configuration. The nontransformed GR also bound to arginine-Sepharose, but the transformed GR did not bind to either resin. Ligand-free GR interacted with both resins and was eluted without loss of its steroid binding ability. The bindings of GR to protamine- and arginine-Sepharose were saturable. The apparent dissociation constants of GR on protamine-Sepharose varied from 0.34 nM (−molybdate) to 0.68 nM (+10 mM molybdate) and those on arginine-Sepharose were 1.99 nM (− molybdate) and 0.65 nM (+ 10 mM molybdate), respectively. The maximum binding capacity was achieved by arginine-Sepharose in the absence of molybdate. Higher salt concentrations (0.5 M NaCl) were required to elute GR from protamine-Sepharose than from arginine-Sepharose (approx 0.03 M NaCl). However, the effectiveness of several salts for the elution of GR was consistent in both resins as follows; MgCl2 = CaCl2 = Na2WO4 > (NH4)2SO4 = Na2MoO4 > arginine-HCl > lysine-HCl > KCl = NaCl. These results suggest that GR interacts with arginine residues in protamine. Chromatography using these resins resulted in 7–10-fold purification of occupied and unoccupied nontransformed GRs.  相似文献   

10.
To examine the properties of androphilic proteins in human benign prostatic hypertrophy, the binding capacity and affinity of the proteins were determined after acetone-treatment, ammonium sulfate precipitation and chromatographies of DEAE and Sephadex G-200. Androphilic proteins in the extract of acetone-dried cytosol from the hypertrophic human prostate was precipitated at 30-50% saturation of ammonium sulfate. The binding of this fraction to dihydrotestosterone and testosterone was high affinity, but the binidng to estradiol-17 beta was the one of non-specific. Androphilic proteins in the 30-50% fraction were eluted from DEAE-cellulose column by buffer containing 0.05 M KCL. On Sephadex G-200 chromatography of 30-50% fraction, the androphilic proteins were observed in three peaks; one was eluted in the void volume and other two were eluted at the sites of IgG and albumin. The amount and ratio of proteins eluted in the void volume and the site of IgG from Sephadex G-200 column were variable in individual tissue samples. The chromatographic behavior of the 30-50% fraction in Sephadex G-200 was not changed significantly by introducing 0.4 M KCl in the system. Polyacrylamide gel electrophoresis was applied for further separation of the proteins.  相似文献   

11.
The structure of the calf uterus nontransformed molybdate-stabilized estradiol receptor (ER) has been investigated using affinity labeling with tamoxifen aziridine and several monoclonal antibodies directed either against the steroid binding protein (Mr approximately 65,000) or against the heat shock protein of Mr approximately 90,000 (hsp 90). The purification was performed using affinity chromatography and a DEAE-Sephacel column. The [3H] estradiol-ER complex was obtained as a well-defined radioactive peak, the specific activity varying between 1,600 and 3,400 pmol/mg of protein. The purified ER sediments in glycerol gradients at 9.4 S +/- 0.2 (n = 5) and at 8.1 S +/- 0.2 (n = 15) in a 0.15 M KCl containing gradient ("8-9 S" ER). From a measured Stokes radius of 7.4 +/- 0.2 nm (n = 12), an Mr of approximately 300,000 has been calculated. Studies of the purified 8-9 S ER by glycerol gradient centrifugation and by "twin antibody" assay with the JS34/32 anti-ER monoclonal antibody suggest the presence of two binding subunits in the nontransformed molecular complex. Results of immunological analysis with polyclonal and several monoclonal antibodies against hsp 90 suggest the association of two molecules of this protein to the two steroid binding subunits. In high salt medium (0.4 M KCl), the purified ER sediments at 5.2 +/- 0.3 (n = 8), has a Stokes radius of 5.7 nm +/- 0.1 (n = 2) and the Mr is approximately 129,000, values expected for a homodimer consisting of two hormone-binding subunits (Mr approximately 65,000), a result confirmed by glycerol gradient centrifugation experiments, using the monoclonal antibody JS34/32. The relationship between the nontransformed 8-9 S ER and the transformed 5 S-ER forms are discussed, the simplest possibility being the release of the already formed homodimeric ER from 8-9 S ER during transformation.  相似文献   

12.
In order to determine if different physicochemical properties exist among antihormone-receptor complexes, we have compared the interaction of the antiprogestin RU486 with progesterone receptor (PR) versus the triphenylethylene antiestrogen H1285 (4-(N,N-diethyl-aminoethoxy)-4'-methoxy-alpha-(p-hydroxyphenyl-alp ha'- ethylstilbene] with estrogen receptor (ER) from rabbit uterine tissue. Contrary to other reports, we observed no difference in the sedimentation properties of transformed PR (4S) when bound by the antagonist RU486 versus the progesterone agonist R5020 in either cytosol or DEAE partially-purified receptor preparations analyzed on sucrose gradients containing 0.3 M KCl. In addition, we found no difference in the sedimentation properties of these receptor preparations in the presence of 10 mM sodium molybdate: the nontransformed RU486-PR and nontransformed R5020-PR both sedimented as a 6S species. These same results were obtained when the receptor preparation and gradient analysis were performed in the absence of monothioglycerol. Likewise, there was no change in the sedimentation properties of the transformed PR when the receptor, partially purified in the absence of molybdate, was analyzed on sucrose gradients containing 10 mM sodium molybdate to prevent receptor alteration during centrifugation. From DNA-cellulose assays performed with partially purified PR in the absence of molybdate we determined that the 4S form of R5020-PR and RU486-PR is transformed receptor; whereas in the presence of molybdate, the 6S species is nontransformed. In contrast, we found a different pattern of sedimentation when comparing transformed antiestrogen-receptor complexes with transformed estrogen-receptor complexes. In this case, transformed H1285-ER sedimented as 6S and estradiol-ER sedimented as 4S. We conclude from these experiments that these two antihormones, RU486 and H1285, may have different mechanisms of action in their antagonism of steroid hormone action. Antiestrogen stabilizes the salt-transformed ER as a dimer while antiprogestin appears to permit dissociation of the oligomeric form of the receptor to the monomeric form.  相似文献   

13.
A soluble RNA-dependent RNA polymerase was isolated from poliovirus-infected HeLa cells and was shown to copy poliovirus RNA in vitro. The enzyme was purified from a 200,000-X-g supernatant of a cytoplasmic extract of infected cells. The activity of the enzyme was measured throughout the purification by using a polyadenylic acid template and oligouridylic acid primer. The enzyme was partially purified by ammonium sulfate precipitation, glycerol gradient centrifugation, and phosphocellulose chromatography. The polymerase precipitated in a 35% saturated solution of ammonium sulfate, sedimented at about 7S on a glycerol gradient, and eluted from phosphocellulose with 0.15 M KC1. The polymerase was purified about 40-fold and was shown to be totally dependent on exogenous RNA for activity and relatively free of contaminating nuclease. The partially purified polymerase was able to use purified polio virion RNA as well as a template. Under the reaction conditions used, the polymerase required an oligouridylic acid primer and all four ribonucleside triphosphates for activity. The optimum ratio of oligouridylic acid molecules to poliovirus RNA molecules for priming activity was about 16:1. A nearest-neighbor analysis of the in vitro RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA rendered it resistant to RNase digestion, thus suggesting that the product RNA was complementary to the virion RNA template.  相似文献   

14.
The glucocorticoid receptor (GR) from mouse AtT-20 pituitary tumor cells, when transformed using a variety of in vitro protocols, yields a DNA-binding RNA-containing 6 S form. In order to better understand the physiological role of RNA interaction with the transformed GR, we have isolated and purified the putative RNA from AtT-20 cells. [3H]Triamcinolone acetonide-labeled cytosolic GR was transformed, using Sephadex G-25 filtration, to yield the RNA-containing 6 S GR. The transformed 6 S GR was separated on DEAE-cellulose into the 4 S GR (eluting at about 100 mM KCl) while its associated RNA eluted at 0.30-0.45 M KCl. The addition of only these RNA fractions to the 4 S GR can reconstitute 6 S GR as shown on 5-20% sucrose gradients. RNA (0.3-0.45 M KCl fractions) was further purified by hydroxylapatite chromatography, and the bound RNA (eluted at approximately 70 mM PO4(-2)) was then loaded onto preparative 5-20% sucrose gradients to separate RNA on the basis of size (sedimentation rate). A uniform class of RNA sedimenting at 4 S was obtained and then adsorbed to oligo(dT)-cellulose columns. The unbound fraction (poly(A-)) was capable of shifting 4 S GR to 6 S. Using these chromatographic procedures about 90% of the cellular RNA, incapable of reconstituting the 6 S GR from the 4 S form, was eliminated. The 4 S GR was covalently cross-linked with the purified RNA (termed PIVB RNA) using formaldehyde. The resulting cross-linked GR X RNA complexes were shown to sediment at the density of ribonucleoprotein (1.38 g/cm3) in CsCl gradients and at the 6 S position in high salt sucrose gradients. The hydrolysis of PIVB RNA with ribonuclease A prevented the formation of high salt-resistant ribonucleoprotein complexes, indicating that the GR may be in close contact with PIVB RNA. Electrophoresis of the PIVB RNA on 5% agarose-formaldehyde-denaturing gels yielded one major band with a molecular size of approximately 75 bases. It thus appears that an endogenous 4 S RNA (PIVB RNA) of about 25 kDa specifically interacts with the monomeric 4 S GR to yield the 6 S GR.  相似文献   

15.
The heat shock protein hsp70/hsc70 is a required component of a five-protein (hsp90, hsp70, Hop, hsp40, and p23) minimal chaperone system reconstituted from reticulocyte lysate that forms glucocorticoid receptor (GR).hsp90 heterocomplexes. BAG-1 is a cofactor that binds to the ATPase domain of hsp70/hsc70 and that modulates its chaperone activity. Inasmuch as BAG-1 has been found in association with several members of the steroid receptor family, we have examined the effect of BAG-1 on GR folding and GR.hsp90 heterocomplex assembly. BAG-1 was present in reticulocyte lysate at a BAG-1:hsp70/hsc70 molar ratio of approximately 0.03, and its elimination by immunoadsorption did not affect GR folding and GR. hsp90 heterocomplex assembly. At low BAG-1:hsp70/hsc70 ratios, BAG-1 promoted the release of Hop from the hsp90-based chaperone system without inhibiting GR.hsp90 heterocomplex assembly. However, at molar ratios approaching stoichiometry with hsp70, BAG-1 produced a concentration-dependent inhibition of GR folding to the steroid-binding form with corresponding inhibition of GR.hsp90 heterocomplex assembly by the minimal five-protein chaperone system. Also, there was decreased steroid-binding activity in cells that were transiently or stably transfected with BAG-1. These observations suggest that, at physiological concentrations, BAG-1 modulates assembly by promoting Hop release from the assembly complex; but, at concentrations closer to those in transfected cells and some transformed cell lines, hsp70 is continuously bound by BAG-1, and heterocomplex assembly is blocked.  相似文献   

16.
17.
The [3H]triamcinolone acetonide ([3H]TA)-binding ability of the rat liver glucocorticoid receptor (GR) was investigated under acidic conditions, ranging from pH 2 to 7.3. Both in the presence and absence of 10 mM molybdate, the [3H]TA-binding ability decreased below pH 6.5 and was almost completely lost below pH 5, pH 5.9 +/- 0.1 giving 50% [3H]TA-binding. The binding ability was recovered when the pH of the cytosol was reversed to 7.3 or the precipitate obtained on acidification was dissolved in a buffer of pH 7.3. Moreover, in the absence of molybdate, the [3H]TA-GR complexes formed at pH 7.3 remained unchanged until pH 5. Then they decreased, pH 3.9 +/- 0.1 giving 50% binding, and completely disappeared at pH 3. [3H]TA-binding activity recovered from the precipitate also decreased in a similar pH region (a 50% decrease in binding being observed at pH 4.2 +/- 0.04). These results suggest that rat liver GR is rather resistant under acidic conditions and that it exists in a peculiar state below pH 5.9 to approximately 4 as to its ligand binding property: unoccupied GR has no [3H]TA-binding ability but [3H]TA-GR complexes once formed at neutral pH do not dissociate. [3H]TA-GR complexes recovered from the precipitate at pH 5 had a Stokes radius of 7.5 nm, little DNA-cellulose-binding ability and sedimented at 8.6S on glycerol gradient centrifugation, indicating that the receptor existed in a nontransformed state. In addition, both occupied and unoccupied GR were transformed at about pH 4, their being 50% transformation. This transformation was accompanied by irreversible denaturation of the receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.  相似文献   

19.
The conversion of arachidonic acid into 8,11,12-trihydroxyeicosatrienoic acid by rat lung high-speed supernatant has been resolved into two separate stages through ammonium sulfate precipitation. The first stage is catalysed by 0-30% ammonium sulfate fraction and converts arachidonic acid and 12-hydroperoxyeicosatetraenoic acid into an intermediate, X. X is subsequently utilized in the second stage by the fraction sedimented at 30-50% saturation in ammonium sulfate to form two isomeric 8,11,12-trihydroxyeicosatrienoic acids.  相似文献   

20.
An efficient four-step procedure is described for preparing highly purified polypeptide chain initiation factor eIF-3 from rat liver microsomal saltwash. The method involves fractionation with ammonium sulfate between 25–40% saturation (0°C) followed by affinity chromatography on rRNA-cellulose, DEAE-cellulose chromatography and sucrose density gradient centrifugation. eIF-3 is eluted from the affinity column at a KCl concentration of 0.18 M. The purification is 10-times and the recovery of activity better than 85%. In the sucrose gradients, eIF-3 sediments as a 15 S particle indicating a total mass of 650 000 Da. The purified eIF-3 is highly active in stimulating globin synthesis in a fractionated translation system. Factor eIF-3 contains eight subunits with molecular weights ranging from 40 000 to 110 000. Seven of the subunits are present in one copy per eIF-3, whereas the factor contains two copies of one subunit. The isoelectric points of the factor subunits range from 5.5 to 7.3 with most of the polypeptides being acidic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号