首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin proteolipid protein (PLP) contains thioester-bound, long-chain fatty acids which are known to influence the structure of the molecule. To gain further insights into the role of this post-translational modification, we studied the effect that chemical deacylation of PLP had on the morphology of myelin and on the protein's ability to mediate the clustering of lipid vesicles. Incubation of rat optic nerves in isoosmotic solutions containing 100 mM hydroxylamine (HA) pH 7.4 led to deacylation of PLP and decompaction of myelin lamellae at the level of the intraperiod line. Incubation of nerves with milder nucleophilic agents (Tris and methylamine) or diluted HA, conditions that do not remove protein-bound fatty acids, caused no alterations in myelin structure. Other possible effects of HA which could have affected myelin compaction indirectly were ruled out. Incubation of optic nerves with 50 mM dithioerythritol (DTE) also led to the splitting of the myelin intraperiod line and this change again coincided with the removal of fatty acids. In addition, the apparently compacted CNS myelin in the PLP-less myelin-deficient rat, like that in tissue containing deacylated PLP, was readily decompacted upon incubation in isoosmotic buffers, suggesting that the function of PLP as a stabilizer of the interlamellar attachment is, at least in part, mediated by fatty acylation. Furthermore, in contrast to the native protein, PLP deacylated with either HA or DTE failed to induce the clustering of phosphatidylcholine/cholesterol vesicles in vitro. This phenomenon is not due to side-effects of the deacylation procedure since, upon partial repalmitoylation, the protein recovered most of its original vesicle-clustering activity. Collectively, these findings suggest that palmitoylation, by influencing the adhesive properties of PLP, is important for stabilizing the multilamellar structure of myelin.  相似文献   

2.
Lipolysis occurred and lamellar structures with a periodicity of 40 A developed in glutaraldehyde-fixed brown adipose tissue of suckling rats when the tissue was incubated at 25 degrees C. The lamellar structures were found in capillaries, associated with chylomicrons, in intracellular channels of capillary endothelium, in extracellular space, and in channels near lipid droplets in adipocytes in tissue of fed rats injected intravenously with chylomicrons. They were also found in channels near mitochondria and inside mitochondria in adipocytes in incubated-fixed tissue of rats exposed to 4 degrees C for 2 hr or unsuckled overnight. In addition, aqueous spaces developed adjacent to lipid droplets in incubated tissue of cold-exposed and unsuckled rats. Development of lamellar structures under conditions causing lipolysis and accumulation of fatty acids in fixed tissue indicated the lamellae were composed primarily of fatty acids. We conclude that fatty acids formed by lipolysis of chylomicrons in tissue from fed rats accumulated in a continuum of the outer leaflets of cell membranes extending from capillary lumen to lipid droplets of adipocytes, and fatty acids formed by lipolysis of intracellular lipid in tissue from cold-exposed or unsuckled rats accumulated mostly in a continuum extending from lipid droplets to the interior of mitochondria. When fatty acids overcrowded the continuum in fixed tissue, they formed lamellar extensions of the continuum at different sites along its course through the tissue.  相似文献   

3.
Early effects of lipolysis on the structure of chylomicrons in vitro were studied in rat chylomicrons incubated with purified bovine mild lipoprotein lipase at pH 8.1. The amount of the albumin added to the incubation medium was limited so that free fatty acids (FFA) and partial glycerides formed during lipolysis would accumulate in the chylomicrons. The structures visualized in lipolyzed chylomicrons was found to be affected by pH during preparation of specimens for microscopy, whether fixed with OsO4 and sectioned, or stained with sodium phosphotungstate and examined as whole mounts. Circular aqueous spaces were present in the triglyceride core of lipolyzed chylomicrons processed at pH 8.1 and 7.4. Sometimes the spaces contained aggregates of osmiophilic material and whorls of bilayered lamellae. The spaces were replaced by lamellar structures having a periodicity of 40 A, in chylomicrons processed at pH 5.5, and the spaces and lamellae were both absent at pH 3.0. The findings indicate that these spaces were lined by a lipid monolayer which formed bilayered lamellae under certain conditions. It is concluded that the monolayer lining the aqueous spaces is an inward extension of the chylomicron surface film produced by the accumulation and movement of lipolytic products, FFA and partial glycerides, in the interfacial plane between core triglyceride and water.  相似文献   

4.
The uptake of plasma triacylglycerol by the dorsalis pedis artery in the rat was studied using intravenous infusion of an emulsion of triacylglycerol at a rate of 2.3 mumol per min for 1.5 or 5 h. Electron microscopy revealed lipid droplets in the arterial lumen near the endothelium and in the medial smooth muscle cells (SMC), but not in the endothelial cells or in the extracellular space. Lamellar structures with a periodicity of 40 A developed in the arterial tissue when glutaraldehyde-fixed specimens were incubated at +25 degrees C before postfixation in osmium. Lamellae were present at the luminal and basal surfaces and within endothelial cells, and also in the medial extracellular space associated with the plasma membrane of SMC, in the intracellular channels and near and inside the mitochondria of the medial SMC. No lipid droplets or lamellae were found in the arterial tissue of the control rats. The findings indicate that plasma triacylglycerol is not taken up by the arterial tissue as intact lipid particles, but that these are hydrolyzed at the luminal surface of the endothelium, the lipolytic products then being transferred to the medial SMC for re-esterification and storage in the form of triacylglycerol. The lamellar structures found in the fixed and incubated arterial tissue are thought to represent fatty acids produced by the lipolysis of triacylglycerol during incubation, and we suggest that the transport of fatty acids from the arterial lumen to the medial SMC occurs by lateral movement in a continuum of cell membranes.  相似文献   

5.
Studies of brain myelin in the "quaking mouse"   总被引:6,自引:0,他引:6  
Myelin was isolated from the brains of "quaking" and littermate control animals and its composition was determined. The brains of quaking animals contained approximately one-fourth as much myelin as the control animals. There were qualitative as well as quantitative differences between the myelin from the two groups. By continuous cesium chloride gradient flotation it was shown that the myelin from the quaking animals consisted solely of a band corresponding to the heavier and smaller of the two bands found in normal controls. Cholesterol and glycolipids were lower and phospholipids (mainly phosphatidylcholine) and protein were higher in quaking animals than in controls. Also, phosphatidal-ethanolamine was decreased, and several consistent differences in the fatty acids (both unsubstituted and hydroxy) and aldehydes of the component lipids were found. In general there were smaller amounts of monounsaturated fatty acids in quaking animals. We suggest from these findings that myelin in the quaking mouse has certain compositional similarities with juvenile myelin, but it may be an abnormal type of myelin.  相似文献   

6.
Asymmetry currents were measured in nodes of myelinated nerve fibers from Rana esculenta at extracellular pH values of 5.2, 7.0, and 8.1 by averaging the currents during and after 1-ms depolarizing and hyperpolarizing voltage pulses. The charge displacement in the nodal membrane was obtained by numerical integration of the asymmetry currents. Lowering the pH from 7.0 to 5.2 significantly slows down the kinetics of the fast charge displacement during depolarization but hardly affects the kinetics after repolarization. The pH reduction increases the maximum charge displacement during depolarization by 46%. No differences between asymmetry currents were found between pH 7.0 and 8.1. It is concluded that protonation by extracellular H+ ions may increase the net charge or the transition range of mobile subunits in the nerve membrane.  相似文献   

7.
Abstract— In the ‘Quaking’ mouse, a deficiency in the long chain fatty acid content of galactolipids has been shown to occur. Myelin in the mutant has been compared to myelin in adult and in 12-day-old controls. We have shown that myelin is not only quantitatively reduced but also qualitatively modified, with a higher protein and a lower galactolipid content. Cerebrosides contain only a small amount of kerasin, lacking long chain nonhydroxylated fatty acids in comparison to both controls; the relative percentage of phrenosin is increased. Although many similarities exist between adult Quaking myelin and myelin at 12 days, differences have been shown to occur which may be in relation to a genetic block at an earlier stage of development.  相似文献   

8.
Myelin proteolipid protein (PLP) is modified after translation by the attachment of long-chain fatty acids to several cysteine residues. In this study, the amount and pattern of fatty acids covalently bound to rat PLP were determined during brain development and in myelin subfractions. For this purpose, PLP was isolated by gel-filtration chromatography in organic solvents, subjected to alkaline methanolysis, and the released fatty acid methyl esters were analyzed by gas-liquid chromatography. At all ages examined, PLP had the same amount of covalently-bound fatty acids (3–4% w/w) and palmitate, oleate and stearate were always the major acyl chains. In contrast to myelin lipids, the fatty acid composition of PLP showed only minor changes between 15-days and 90-days of age. The amount and pattern of fatty acids bound to PLP prepared from three myelin subfractions were also indistinguishable. The conservation of a characteristic PLP-fatty acid make-up during brain development and in various myelin compartments suggests that this post-translational modification is essential for the normal functioning of the protein.  相似文献   

9.
In the human stomach, gastric lipase hydrolyzes only 10 to 30% of ingested triacylglycerols because of an inhibition process induced by the long chain free fatty acids generated, which are mostly protonated at gastric pH. The aim of this work was to elucidate the mechanisms by which free fatty acids inhibit further hydrolysis. In vitro experiments examined gastric lipolysis of differently sized phospholipid-triolein emulsions by human gastric juice or purified human gastric lipase, under close to physiological conditions. The lipolysis process was further investigated by scanning electron microscopy, and gastric lipase and free fatty acid movement during lipolysis were followed by fluorescence microscopy. The results demonstrate that: 1) free fatty acids generated during lipolysis partition between the surface and core of lipid droplets with a molar phase distribution coefficient of 7.4 at pH 5.40; 2) the long chain free fatty acids have an inhibitory effect only when generated during lipolysis; 3) inhibition of gastric lipolysis can be delayed by the use of lipid emulsions composed of small-size lipid droplets; 4) the release of free fatty acids during lipolysis induces a marked increase in droplet surface area, leading to the formation of novel particles at the lipid droplet surface; and 5) the gastric lipase is trapped in these free fatty acid-rich particles during their formation. In conclusion, we propose a model in which the sequential physicochemical events occurring during gastric lipolysis lead to the inhibition of further triacylglycerol lipolysis.  相似文献   

10.
Abstract— Three dietary levels of essential fatty acids (EFA), 3 0, 0 75 and 0 07 calorie-% were fed to rats for two generations or more. Myelin was isolated at the ages of 18, 30, 45 and 120 days and synaptosomal plasma membranes at 18, 30 and 45 days. No difference was found in the lipid composition between the dietary groups in either subcellular fraction. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) were analysed. In myelin the proportions of 18:1 and 20:1 increased with age, while those of 20:4 (n-6) and 22:6 (n-3) decreased, in synaptosomal plasma membranes the proportions of 20:4 (n-6) decreased with age, but 22:6 (n-3) increased and the sum of the polyunsaturated fatty acids was constant. At no age were significant differences found between the proportions of saturated and monounsaturated fatty acids, in either myelin or the synaptosomal plasma membrane fraction, when the different dietary groups were compared. In myelin from rats fed 007 calorie-% EFA the proportions of 20:4 (n-6) were slightly lower than in the two other groups, while those of 22 6 (n-3) were considerably lower. The synaptosomal plasma membranes fraction of rats fed O-07 calorie-% EFA had equal or slightly larger amounts of 20:4 (n-6) than in the two other groups, while 22:6 (n-3) was considerably smaller. In both subcellular fractions the decreased proportion of fatty acids of linoleic and linolenic acid series was compensated for by an increase in 20:3 (n-9) and 22:3 (n-9). The sum of these two fatty acids was equal in the EPG of myelin and synaptosomal plasma membranes at 18 days of age. At 30 and 45 days of age a lower value was found in the synaptosomal plasma membranes, while in the myelin fraction a slight decrease was found only at 120 days of age.  相似文献   

11.
The effect of carnitine administration on levels of lipid peroxide and activities of superoxide dismutase and catalase was studied in rats administered isoproterenol to induce myocardial infarction. Levels of fatty acid were lower in rats pretreated with carnitine at the peak period and given isoproterenol than the levels in isoproterenoltreated control rats. Lipid peroxides were decreased in the heart at peak infarction in carnitine-treated rats compared to the levels in isoproterenol-treated controls. Activities of superoxide dismutase and catalase showed no change in carnitine-treated animals given isoproterenol compared to those in normal control rats, while they decreased in animals treated with isoproterenol alone.  相似文献   

12.
Myelin bodies were isolated from the renal cortex of gentamicin-treated rats (100 mg/kg body weight, twice daily for 3 days, i.p.) employing an initial pelleting by differential centrifugation and subsequent flotation on a discontinuous sucrose gradient. These structures were found to contain almost twice as much protein as phospholipid and SDS-polyacrylamide gel electrophoresis revealed the presence of many different polypeptides. All the major phospholipids are present, although myelin bodies contain a considerably higher proportion of phosphatidylinositol, somewhat more phosphatidylcholine and considerably lower percentages of phosphatidylserine and sphingomyelin than do normal renal phospholipids. The fatty acids of myelin body phospholipids are highly saturated (67.3-87.9%) and a striking feature is the occurrence of relatively large amounts of 22:1, presumably erucic acid, especially in sphingomyelin. Myelin bodies contain small amounts of unesterified cholesterol, unesterified dolichol and coenzymes Q9 and Q10.  相似文献   

13.
LIPID COMPOSITION OF OPTIC NERVE MYELIN   总被引:1,自引:0,他引:1  
Abstract— Myelin was isolated from bovine optic nerves by differential ultracentrifugation and its lipid composition was analysed. Optic nerve myelin contained 76·3 per cent lipid. The major lipids were cholesterol, ethanolamine glycerophosphatides (EGP) and cerebroside. Serine glycerophosphatides (SGP), sphingomyelin and cerebroside sulphate were present in smaller proportions. EGP and SGP contained 34·6 and 0·5 per cent aldehydes. The major fatty aldehydes were palmitaldehyde, stearaldehyde and octadecenaldehyde. The fatty acids of EGP, SGP and choline glycerophosphatides (CGP) were chiefly 16:0, 18:0 and 18:1, with small proportions of 20 and 22 carbon polyunsaturates. The sphingolipids contained predominantly saturated and monounsaturated fatty acids of chain lengths of 20–26 carbon atoms. Optic nerve myelin and white matter myelin resembled one another closely in overall lipid composition and in the fatty acid compositions of their constituent lipids. Optic nerve myelin and white matter myelin are chemically similar membranes, but both of these differ in their lipid composition from spinal root myelin.  相似文献   

14.
Myelin basic protein induces slow and limited fusion of phospholipid vesicles composed of a mixture of phosphatidylcholine and phosphatidylethanolamine. Addition of palmitoyl aldehyde to these vesicles dramatically increases their ability to fuse in the presence of myelin basic protein. Compared to aliphatic aldehydes, fatty acids are much less potent promoters of myelin basic protein-induced membrane fusion. The ability of aliphatic aldehydes to promote myelin basic protein-induced membrane fusion may be of relevance to myelin structure and function and, particularly, to the pathology of demyelinating diseases such as multiple sclerosis.  相似文献   

15.
A protein fatty acylesterase activity that catalyzes the removal of fatty acid from exogenous proteolipid protein (PLP) has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the deacylation of PLP was obtained in 0.5% Triton X-100, 1 mM dithiothreitol at pH 7.0 and at 37 degrees C. Other detergents (octyl beta-D-glucoside, Nonidet P-40, and Tween 20) have little or no effect, whereas deacylation was completely abolished by 0.1% sodium dodecyl sulfate or boiling the membrane fraction for 5 min prior to incubation. Under optimal conditions, the rate of deacylation was linear up to 20 min, and the apparent Km for bovine [3H]palmitoyl-PLP was 18 microM. The myelin-associated PLP fatty acylesterase has no apparent requirements for divalent cations (Ca2+, Mg2+, Mn2+), and chelators such as EDTA, [ethylenebis(oxyethylenenitrilo)] tetraacetic acid, and 1,10-phenantroline have little or no effect on enzyme activity. Sulfhydryl and histidine residues are needed for full enzyme activity, whereas the "active serine"-directed inhibitor phenylmethylsulfonyl fluoride has no effect. The myelin-associated protein fatty acylesterase was present throughout brain development and in all myelin subfractions, in agreement with the dynamic metabolism of PLP-bound fatty acids. Enzyme activity was also present in sciatic nerve, brain cortex, and heart whereas liver was devoid of activity. Several esterases, including phospholipase A2, glyoxalase II, and acetylcholinesterase, did not remove fatty acid from PLP. Myelin basic protein, palmitoyl-CoA hydrolase, and myelin-associated nonspecific esterase were also ruled out as the PLP fatty acylesterase. Thus, all data seem to indicate that this enzyme is different from esterases of the lipid metabolism. Finally, stimulation of protein phosphorylation with Ca2+, but not with cyclic-AMP, inhibited PLP deacylation, suggesting that the myelin-associated protein fatty acylesterase activity is regulated by endogenous Ca(2+)-dependent protein kinases.  相似文献   

16.
Three surface-active fractions which differ in their morphology have been isolated from rat lung homogenates by ultracentrifugation in a discontinuous sucrose density gradient. In order of increasing density, the fractions consisted, as shown by electron microscopy, primarily of common myelin figures, lamellar bodies, and tubular myelin figures. The lipid of all three fractions contained approximately 94% polar lipids and 2% cholesterol. In the case of the common myelin figures and the lamellar bodies, the polar lipids consisted of 73% phosphatidylcholines, 9% phosphatidylserines and inositols, and 8% phosphatidylethanolamines. In the case of the tubular myelin figures, the respective percentages were 58, 19, and 5. Over 90% of the fatty acids of the lecithins of all three fractions were saturated. Electrophoresis of the proteins of the fractions in sodium dodecyl sulfate or Triton X-100 revealed that the lamellar bodies and the tubular myelin figures differed in the mobilities of their proteins. The common myelin figures, however, contained proteins from both of the other fractions. These data indicate that, whereas the lipids of the extracellular, alveolar surfactant(s) originate in the lamellar bodies, the proteins arise from another source. It is further postulated that the tubular myelin figures represent a liquid crystalline state of the alveolar surface-active lipoproteins.  相似文献   

17.
P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of X. laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0's putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0's adhesion role and the role of its acylation in compact PNS myelin.  相似文献   

18.
Myelin basic protein induces slow and limited fusion of phospholipid vesicles composed of a mixture of phosphatidylcholine and phosphatidylethanolamine. Addition of palmitoyl aldehyde to these vesicles dramatically increases their ability to fuse in the presence of myelin basic protein. Compared to aliphatic aldehydes, fatty acids are much less potent promoters of myelin basic protein-induced membrane fusion. The ability of aliphatic aldehydes to promote myelin basic protein-induced membrane fusion may be of relevance to myelin structure and function and, particularly, to the pathology of demyelinating diseases such as multiple sclerosis.  相似文献   

19.
Abstract— Cerebrosides, sulphatides and sphingomyelin were isolated from bovine CNS myelin and from myelin-free axons derived from myelinated axons. The fatty acid composition of each sphingolipid was determined by gas-liquid chromatography of the fatty acid methyl esters. In each case the fatty acids of the axonal sphingolipids were of shorter average chain length than those from the corresponding myelin lipids. These differences, however, were small and the fatty acids of the axonal cerebrosides and sulphatides were similar in average chain length to those reported previously for bovine myelin. The principal unsubstituted acid of both cerebroside and sulphatide from axons was 24: 1, with the total long chain acids (> C18) amounting to 80 and 85 per cent, respectively. The corresponding figures for myelin galactolipids were 94 and 95 per cent long chain acids. The principal α-hydroxy acid of both axonal galactolipids was 24 h:0, with cerebroside having 80 per cent and sulphatide 92 per cent long chain acids, compared to the figures of 87 and 97 per cent for the corresponding myelin lipids. In axonal sphingomyelin the major acid was 18:0 (compared to 24:1 in myelin) and the long chain acids were 61 per cent of the total vs 76 per cent of the total for myelin sphingomyelin. The non-identity of axonal and myelin sphingolipid fatty acids substantiates the belief that they are intrinsic axonal constituents. These findings do not rule out the possibility of a close metabolic relationship between the sphingolipids of the axon and its myelin sheath.  相似文献   

20.
Cholesterol-Esterifying Enzymes in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: A cholesterol-esterifying enzyme which incorporates exogenous fatty acids into cholesterol esters in the presence of ATP and coenzyme A was demonstrated in 15-day-old rat brain. This enzyme was maximally active at pH 7.4 and distinct from the cholesterol-esterifying enzyme reported earlier (Eto and Suzuki, 1971), which has a pH optimum at 5.2 and does not require cofactors. Properties of the two enzymes have been compared. Both the enzymes showed negligible esterification with acetate and were maximally active with oleic acid. The pH 5.2 enzyme esterified desmosterol, lanosterol and cholesterol at about the same rate, while the pH 7.4 enzyme was only 50% as active with lanosterol as it was with cholesterol and desmosterol. Phosphatidyl serine stimulated the pH 5.2 enzyme but not the pH 7.4 enzyme. Phosphatidyl choline and sodium taurocholate showed no effect on either of the enzymes. Both the enzymes were associated with particulate fractions, but the pH 7.4 enzyme was localized more in the microsomes. Purified myelin showed 2.6-fold and 1.5-fold higher specific activities of pH 5.2 and 7.4 enzymes respectively, when compared with homogenate. About 7–10% of total activity of both the enzymes was associated with purified myelin. Brain stem and spinal cord showed higher specific activity of pH 5.2 enzyme than cerebral cortex and cerebellum, while pH 7.4 enzyme specific activity was higher in cerebellum and brain stem than in cerebral cortex and spinal cord. Microsomal pH 7.4 activity showed progressive increase prior to the active period of myelination, reaching a maximum on the 15th day after birth and declined to 20% of the peak activity by 30 days. In contrast, pH 5.2 enzyme reached maximum activity about the 6th day after birth and remained at this level well into adulthood. In 15-day-old rat brain, pH 7.4 enzyme had five to six times higher specific activity than pH 5.2 enzyme, while in adults the activities were equal. The pH 7.4 enzyme showed a threefold higher specific activity than pH 5.2 enzyme in myelin from 15-day-old rats, but in adults the reverse was true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号