首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
The possible contribution of pinon (Pinus edulis) seed to the diet of an Anasazi population is investigated using present data on seed productivity and archaeological data on resource use. Annual estimates of total productivity for a 135.7 sq km study area in Montezuma County, Colorado, vary by a factor of 141 in a sample spanning 5 yr. Trees greater than about 25 cm (basal diameter) are usually monoecious and produce significantly more cones per tree but fewer good seeds per cone than smaller, usually dioecious specimens. Archaeological data suggest that piñon seed was a relatively unimportant food item after the initial period of Anasazi colonization of the Dolores River valley about a.D. 600. Use of piñon seed as food was inversely related to degree of agricultural intensification and use of piñon for fuel.  相似文献   

2.
Deforestation and agricultural land degradation in tropical regions can create conditions for growth of perennial plant species forming mono‐dominated patches (MDP). Such species might limit forest regeneration, and their proliferation forces the abandonment of fields and subsequent deforestation to establish new fields. Therefore, identifying factors fostering MDP species is critical for biodiversity conservation in human‐modified landscapes. Here, we propose a conceptual framework to identify such factors and apply it to the case of Pteridium aquilinum (bracken fern), a light‐demanding species, tolerant of low soil fertility and fire. We hypothesize that bracken proliferation is promoted by land‐use changes that increase light availability, especially in sites with low soil fertility and land uses involving fire. We assessed this idea using agricultural fields in southeastern Mexico with different land‐use change histories and quantifying prevalence and cover of bracken. Five different land‐use change histories resulted from transitions among forest, crop, pasture, and fallow field stages. Of the 133 fields sampled, 71 percent had P. aquilinum; regression tree analysis indicated that 65 percent of inter‐field variation in prevalence and 90 percent in cover was explained by land‐use change history and soil type. Maximum prevalence, cover, and rates of increase in bracken were found on fields with low fertility sandy/clay soils, which had been used for crops and pasture, were frequently burned, and had high levels of light. Fields on fertile alluvial soil never used for pasture were bracken‐free. Agriculture promoting high light environments on less fertile soils is a major cause of bracken proliferation and likely that of other MDP species.  相似文献   

3.
Animals that rely on refuges for safety can theoretically increase their foraging area without simultaneously increasing predation risk and travel costs by using more refuges. The key prediction of this theory, a negative correlation between food abundance, home range size and the number of refuges used, has never been empirically tested. We determined how home range size and refuge use by the Central American agouti (Dasyprocta punctata) varied across a gradient of abundance of the agoutis' principal food source: seeds and fruits of the palm Astrocaryum standleyanum. We used both manual and automated radio telemetry to measure space use of 11 agoutis during 2 mo of the Astrocaryum fruiting season, and of another set of 10 agoutis during 6 mo in which the animals largely relied on cached Astrocaryum seeds. We found that agoutis living in areas of lower food density had larger home ranges, and that all individuals used multiple refuges. The number of refuges, however, was not correlated with home range size. Consequently, agoutis that had larger home ranges roamed farther from their refuges. These results suggest that agoutis increase their home range size in response to food scarcity at the cost of their safety.  相似文献   

4.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

5.
The effects of immediately adjacent agricultural fertilization on nitrogen (N) at upland forest edges have not been previously studied. Our objective was to determine whether N from fertilized agriculture enters northern Idaho forest edges and significantly impacts their N status. We stratified 27 forest edge sampling sites by the N fertilization history of the adjacent land: current, historical, and never. We measured N stable isotopes (δ15N), N concentration (%N), and carbon-to-nitrogen (C/N) ratios of conifer tree and deciduous shrub foliage, shrub roots, and bulk soil, as well as soil available N. Conifer foliage δ15N and %N, shrub root δ15N, and bulk soil N were greater and soil C/N ratios lower (P < 0.05) at forest edges than interiors, regardless of adjacent fertilization history. For shrub foliage and bulk soil δ15N, shrub root %N and C/N ratios, and soil nitrate, significant edge–interior differences were limited to forests bordering lands that had been fertilized currently or historically. Foliage and soil δ15N were most enriched at forest edges bordering currently fertilized agriculture, suggesting that these forests are receiving N fertilizer inputs. Shrub root %N was greater at forest edges bordering currently fertilized agriculture than at those bordering grasslands that had never been fertilized (P = 0.01). Elevated N at forest edges may increase vegetation growth, as well as susceptibility to disease and insects. The higher N we found at forest edges bordering agriculture may also be found elsewhere, given similar agricultural practices in other regions and the prevalence of forest fragmentation.  相似文献   

6.
Previous studies have used C and N isotope ratios to investigate the use of different food resources such as plant and animal detritus by container‐breeding mosquitoes. This study is the first to report on the potential food resources assimilated by larval mosquitoes in agricultural and reference wetlands. Larval mosquitoes (Diptera: Culcidae) were sampled, along with their potential food resources, from agricultural and reference wetland habitats throughout a seasonal hydroperiod. IsoSource mixing model results indicated that food resources had greater δ15N isotope values in agricultural wetlands compared with cypress‐gum swamps. In February, Aedes vexans (Meigen) and Culex territans Walker larvae fed primarily on lower quality food resources (coarse particulate organic matter and sediment) based on C:N. In contrast, higher quality food resources (fine particulate organic matter) were utilized by Anopheles spp. throughout the study and by Psorophora columbiae (Dyer and Knab) in May. This research contributes to a more comprehensive understanding of the food resources available and assimilated by larval mosquitoes in agricultural wetlands.  相似文献   

7.
A fundamental shift has taken place in agricultural research and world food production. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive, and to be sustainable in the long-term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. In the case of nitrogen (N), inputs into agricultural systems may be in the form of N-fertilizer, or be derived from atmospheric N2 via biological N2 fixation (BNF).Although BNF has long been a component of many farming systems throughout the world, its importance as a primary source of N for agriculture has diminished in recent decades as increasing amounts of fertilizer-N are used for the production of food and cash crops. However, international emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of BNF in supplying N for agriculture. This paper documents inputs of N via symbiotic N2 fixation measured in experimental plots and in farmers' fields in tropical and temperate regions. It considers contributions of fixed N from legumes (crop, pasture, green manures and trees), Casuarina, and Azolla, and compares the relative utilization of N derived from these sources with fertilizer N.  相似文献   

8.

Biological pest control is becoming increasingly important for sustainable agriculture. Although many species of natural enemies are already being used commercially, efficient biological control of various pests is still lacking, and there is a need for more biocontrol agents. In this review, we focus on predatory soil mites, their role as natural enemies, and their biocontrol potential, mainly in vegetable and ornamental crops, with an emphasis on greenhouse systems. These predators are still underrepresented in biological control, but have several advantages compared to predators living on above-ground plant parts. For example, predatory soil mites are often easy and affordable to mass rear, as most of them are generalist predators, which also means that they may be used against various pests and can survive periods of pest scarcity by feeding on alternative prey or food. Many of them can also endure unfavourable conditions, making it easier for them to establish in various crops. Based on the current literature, we show that they have potential to control a variety of pests, both in greenhouses and in the field. However, more research is needed to fully understand and appreciate their potential as biocontrol agents. We review and discuss several methods to increase their efficiency, such as supplying them with alternative food and changing soil/litter structure to enable persistence of their populations. We conclude that predatory soil mites deserve more attention in future studies to increase their application in agricultural crops.

  相似文献   

9.
SYNOPSIS. The responses of amebae and bacteria in a grassland soil were investigated by an overlay plaque technic developed in this laboratory. This procedure, using Aerobacter aerogenes as the food source, allowed convenient assay of significant changes in ameba populations which resulted from additions of nutrient and water. In comparison with controls, when water was added an initial increase occurred in bacterial counts followed by an increase in the numbers of amebae. Upon addition of glucose, ameba populations increased initially and then decreased with time, while populations of bacteria remained constant. The addition of hay resulted in significant increases in populations of bacteria and amebae. Plaque appearance on enumeration plates was most rapid with inocula from nutrient-treated soils. Predominant amebae recovered by this technic were species of Acanthamoeba and Hartmannella. They were estimated to be present in untreated soils at 3.2 × 103/gram. Ameba feeding experiments were used to evaluate the possible suitability of other bacteria as food. The results indicated that nonpigmented laboratory strains of bacteria were preferred, while pigmented grassland isolates were more rapidly utilized. Small soil amebae appear to be sensitive to minor soil perturbations, and the enumeration procedure developed in this study should aid in following their responses to environmental stresses.  相似文献   

10.
Over the past two decades, archaeologists and physical anthropologists investigating the prehistoric Anasazi culture have identified numerous cases of suspected cannibalism. Many scholars have suggested that starvation caused by environmental degradation induced people to eat one another, but the growing number of cases as well as their temporal and spatial distribution challenge this conclusion. At the same time, some scholars have questioned the validity of the osteoarchaeological indicators that are used to identify cannibalism in collections of mutilated human remains. To address these concerns, this study attempts to reconstruct the behaviors that produced the Anasazi skeletal trauma by first examining ethnographic, ethnohistoric, and archaeological material for analogues useful for interpreting mutilated human remains and then correlating these analogues with the evidence from the Southwest. The patterns suggest that different behaviors are responsible for the Anasazi skeletal mutilation seen in different time periods. To explain these differences, the study employs game theoretical models that examine how changing social and physical contexts altered the sociopolitical strategies that Anasazi groups would likely have employed. The results suggest that violent mutilation and perhaps cannibalism was an intentional sociopolitical strategy of intimidation used during Pueblo II (A.D. 900–1100), while environmental changes after this period promoted resource-based warfare and the incidental skeletal trauma associated with this behavior.  相似文献   

11.
 Soils from valley oak (Quercus lobata Nee) riparian areas of the Cosumnes River Nature Conservancy Preserve near Sacramento, California were added to growth medium of valley oak seedlings grown in a greenhouse or in agricultural fields at Cosumnes which probably once supported valley oak trees and are now replanted with native riparian vegetation or allowed to revegetate naturally. Agricultural field soil from the Cosumnes River Preserve was presumed to be low or lacking in ectomycorrhizal inoculum. The study was designed to (1) determine whether valley oak stand soil transfer could cause mycorrhizal infection on valley oak seedlings in an agricultural field and in a greenhouse, (2) describe ectomycorrhizal morphological types formed on valley oak seedlings, and (3) determine whether seedling growth is enhanced more by transfer of natural valley oak stand soil than agricultural field soil. In the field study, transfer of forest soil increased average ectomycorrhizal diversity (2.4 types) more than transfer of agricultural field soil (1.2 types). Valley oak seedlings were responsive to ectomycorrhizal infection in the field study. With increase in mycorrhizal infection there was an increase in shoot growth at the expense of root growth. In the greenhouse study, both percent mycorrhizal infection and mycorrhizal diversity were increased more by transfer of oak forest and woodland soils than agricultural field soil. Eight morphotypes occurred on seedlings in forest and woodland soils but only three morphotypes in agricultural soil. This result strongly suggests that the agricultural field also harbors ectomycorrhizal propagules but forest and woodland soils support a more abundant and diverse ectomycorrhizal flora. Accepted: 17 August 1997  相似文献   

12.
The contamination of agricultural soils by heavy metals is a worldwide problem. Degradation of organic matter (OM) from organic amendments used in the remediation of metal-contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of four differing organic amendments on chemical forms of Pb and Cd in a contaminated soil were investigated in a pot experiment of control unamended soil and soils amended with dry cow and poultry manures (20 g CM or PM kg?1 soil), and cow and poultry manure extracts (2 g CME or PME kg?1 soil) cultured with cannabis sativa. After eight weeks, a sequential extraction scheme was used to fractionate soil Pb and Cd into soluble-exchangeable (Sol-Exch), organic matter associated (AOM), and carbonates associated (ACar) forms. The addition of animal manures and their extracts increased the DTPA-extractable Pb and Cd in soil significantly. Soil Pb and Cd in Sol-Exch fraction were increased by manure applications. Both Pb and Cd in AOM fraction were increased by application of manures and their extracts. This increase was more obvious for Pb in application of cow and poultry manure extracts. The ACar chemical forms of Pb and Cd were also increased by application of manures and their extracts. The increases of Pb and Cd in Acar fraction was noticeable in soils treated with cow manure. Soil cultivation with cannabis sativa increased available, Sol-Exch, and AOM chemical forms of Pb in soil significantly compared to control soil. However, soil Pb and Cd in ACar fraction were decreased significantly by cannabis cultivation. The effect of cannabis cultivation on all of the Cd chemical forms (except on Sol-Exch) was similar to the results of Pb chemical forms. Plant cultivation had no significant effect on Cd in Sol-Exch chemical form.  相似文献   

13.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

14.
Sustainability would never be achieved farewell as agricultural practices continue beyond the carrying capacity of the ecosystem through the exaggerated abuse of agricultural chemicals. The rapid growth of agricultural productivity in chemical farming systems is shrinking off. Moreover, environmental torrent from agricultural activities jeopardizes agricultural growth in several countries. Problems associated with the wealthy agricultural production in the developed world and underproduction in developing countries necessitate a widely accepted assessment of the present status of agriculture. It is time to install new farming systems committed to following environmental and sustainable approaches, and producing healthy food free from agrochemical residues. Ecologically oriented farming routines are being developed within the frame of the recent achievements in environmental biotechnology, the most important of which is the clean farming system which is increasingly acknowledged as a potential solution to copious problems overlaying present world agriculture. It is a farming system, which aims at evading the routine use of agricultural chemicals and reducing their rates of application. Clean farming systems directly give rise to four environmental biotechnologies, i.e., recycling of composted organic waste, fortifying the rhizosphere soil with biofertilizers, encouraging the use of biopesticides in agricultural practices and bioremediation of polluted agro‐ecosystems.  相似文献   

15.
Laboratory assays demonstrated the presence of a small positive geotaxis response to a 15° incline by Folsomia candida Willem (Collembola: Isotomidae). Negative phototaxis played an additive role to positive geotaxis when the experimental apparatus were exposed to light. The geotactic response was negatively affected by cold acclimation and decreasing surrounding temperature, but unaffected by food deprivation. The reduced mobility of springtails at low temperature did not seem to play a role in the corresponding decreased geotaxis. The low level of geotaxis and its further decrease with exposure to low temperature support an earlier suggestion that F. candida do not respond to cooling temperatures of fall by relocation to warmer deeper soil layers, but remain in the upper soil layers and increase their cold tolerance to continue foraging in the food‐rich upper soil layers.  相似文献   

16.
Boddington  C.L.  Dodd  J.C. 《Plant and Soil》2000,218(1-2):137-144
Two pre-established agricultural field trials were assessed for the abundance of arbuscular mycorrhizal fungi (AMF) in the soil (density of spores, species richness and lengths of extra-radical mycelium [ERM]) in association with one of three tropical plant species (Gliricidia sepium, Peltophorum dasyrachis and Zea mays). The trials were managed by one of three agricultural practices: soil disturbance in a monoculture system, a root barrier to prevent interactions between plants in an agroforestry system or the addition of organic matter (OM) in an agroforestry and a monoculture system. The lengths of ERM of AMF in the soil were greater in the agroforestry system than the monoculture system. These were greater when a root barrier was present, but decreased when OM was added. Soil disturbance reduced the density of spores, species richness and the lengths of ERM of AMF compared with the undisturbed soil. This work indicates that agricultural trials may provide a useful tool to monitor the abundance of AMF in the field. Clearly, there is potential to increase the abundance of AMF, from different genera, in the soil through the management of agricultural practices. The significance of the abundance of AMF for subsequent benefits to plant growth and development and ultimately the sustainability of tropical agro-ecosystems are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change.Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application.Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1–4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non-governmental organisations, including delegations from 42 FAO Member States. At the end of ABDC-10, the Member States reached a number of key conclusions, agreeing, inter alia, that FAO and other relevant international organisations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.  相似文献   

18.

Samples of floor materials used at present in different types of food plants were studied for their sensitivity to fouling and for their cleaning properties. A cleaning procedure close to that used in industry was carried out on seven different floor samples fouled with six industrial soils (e.g. green salad soil, reconstituted milk, and meat) and inoculated with spores of Bacillus stearothermophilus var. calidolactis as tracer. Sensitivity to fouling and the cleanability of the different floor materials were measured, and the results showed a significant difference between them. These differences were dependent upon the type of soil. Sensitivity to fouling and cleanability were not correlated with their slipping resistance characteristics.  相似文献   

19.
Understanding the impact of agriculture on biodiversity is critical for effective conservation management. Our goal was to determine the impact of agricultural disturbance on the lizard fauna of Los Haitises National Park and the surrounding region in the Dominican Republic. This region has a history of extensive agricultural disturbance followed by abrupt abandonment. Abundance and diversity were surveyed in six habitats: relatively undisturbed hilltop (mogote), four habitats disturbed by agriculture (pasture, oil palm plantation, cacao plantation, conuco or home garden), and one forested habitat. Three of these habitats (pasture, cacao plantation, conuco) were also examined at different stages of activity or abandonment. Glue-trap grids were used to sample each habitat. In general, species richness was lower in more heavily or recently disturbed habitats. Richness was lowest in active agricultural habitats where only 54% of the region's lizard species were detected. Notably, agricultural systems differed considerably in their ability to support a diverse lizard assemblage. Abandoned agricultural habitats had slightly higher richness than their active counterparts, but still contained only 69% of the region's species. By contrast, nearly every native species, including several never observed in agriculturally disturbed habitats, were detected on the undisturbed hilltops (mogotes). These mogotes may have served as refugees for species that could not tolerate disturbance when the region was being heavily exploited for agriculture. Overall, our results suggest that the continued protection of the park, and its mogotes in particular, will be required to maintain the region's lizard diversity.  相似文献   

20.
The world faces two enormous challenges that can be met, at least in part and at low cost, by making certain changes in agricultural practices. There is need to produce enough food and fibre for a growing population in the face of adverse climatic trends, and to remove greenhouse gases to avert the worst consequences of global climate change. Improving photosynthetic efficiency of crop plants can help meet both challenges. Fortuitously, when crop plants’ roots are colonized by certain root endophytic fungi in the genus Trichoderma, this induces up-regulation of genes and pigments that improve the plants’ photosynthesis. Plants under physiological or environmental stress suffer losses in their photosynthetic capability through damage to photosystems and other cellular processes caused by reactive oxygen species (ROS). But certain Trichoderma strains activate biochemical pathways that reduce ROS to less harmful molecules. This and other mechanisms described here make plants more resistant to biotic and abiotic stresses. The net effect of these fungi’s residence in plants is to induce greater shoot and root growth, increasing crop yields, which will raise future food production. Furthermore, if photosynthesis rates are increased, more CO2 will be extracted from the atmosphere, and enhanced plant root growth means that more sequestered C will be transferred to roots and stored in the soil. Reductions in global greenhouse gas levels can be accelerated by giving incentives for climate-friendly carbon farming and carbon cap-and-trade programmes that reward practices transferring carbon from the atmosphere into the soil, also enhancing soil fertility and agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号