首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Receptor-like kinases (RLKs) belong to the large RLK/Pelle gene family, and it is known that the Arabidopsis thaliana genome contains >600 such members, which play important roles in plant growth, development, and defense responses. Surprisingly, we found that rice (Oryza sativa) has nearly twice as many RLK/Pelle members as Arabidopsis does, and it is not simply a consequence of a larger predicted gene number in rice. From the inferred phylogeny of all Arabidopsis and rice RLK/Pelle members, we estimated that the common ancestor of Arabidopsis and rice had >440 RLK/Pelles and that large-scale expansions of certain RLK/Pelle members and fusions of novel domains have occurred in both the Arabidopsis and rice lineages since their divergence. In addition, the extracellular domains have higher nonsynonymous substitution rates than the intracellular domains, consistent with the role of extracellular domains in sensing diverse signals. The lineage-specific expansions in Arabidopsis can be attributed to both tandem and large-scale duplications, whereas tandem duplication seems to be the major mechanism for recent expansions in rice. Interestingly, although the RLKs that are involved in development seem to have rarely been duplicated after the Arabidopsis-rice split, those that are involved in defense/disease resistance apparently have undergone many duplication events. These findings led us to hypothesize that most of the recent expansions of the RLK/Pelle family have involved defense/resistance-related genes.  相似文献   

2.
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.  相似文献   

3.
Receptor-Like Kinase (RLK)/Pelle genes play roles ranging from growth regulation to defense response, and the dramatic expansion of this family has been postulated to be crucial for plant-specific adaptations. Despite this, little is known about the history of or the factors that contributed to the dramatic expansion of this gene family. In this study, we show that expansion coincided with the establishment of land plants and that RLK/Pelle subfamilies were established early in land plant evolution. The RLK/Pelle family expanded at a significantly higher rate than other kinases, due in large part to expansion of a few subfamilies by tandem duplication. Interestingly, these subfamilies tend to have members with known roles in defense response, suggesting that their rapid expansion was likely a consequence of adaptation to fast-evolving pathogens. Arabidopsis (Arabidopsis thaliana) expression data support the importance of RLK/Pelles in biotic stress response. We found that hundreds of RLK/Pelles are up-regulated by biotic stress. Furthermore, stress responsiveness is correlated with the degree of tandem duplication in RLK/Pelle subfamilies. Our findings suggest a link between stress response and tandem duplication and provide an explanation for why a large proportion of the RLK/Pelle gene family is found in tandem repeats. In addition, our findings provide a useful framework for potentially predicting RLK/Pelle stress functions based on knowledge of expansion pattern and duplication mechanism. Finally, we propose that the detection of highly variable molecular patterns associated with specific pathogens/parasites is the main reason for the up-regulation of hundreds of RLK/Pelles under biotic stress.  相似文献   

4.
Receptor-like kinases (RLKs) are a key class of genes that contribute to diverse phenomena from plant development to defense responses. The availability of completed potato genome sequences provide an excellent opportunity to identify and characterize RLK gene superfamily in this lineage. We identified 747 non-redundant RLK genes in the potato genome that were classified into 52 subfamilies, of which 58% members organized into tandem repeats. Nine of potato RLK subfamilies organized into tandem repeats. Also, six subfamilies exhibited lineage-specific expansion compared to Arabidopsis. The majority of RLK genes were physically organized within heterogeneous and homogeneous clusters on chromosomes and were unevenly distributed on the genome. Chromosome 2, 3 and 7 contained the highest number of RLK genes and the most underrepresented chromosomes were chromosome 8, 10 and 11. Taken together, our results provide a framework for future efforts on comparative, evolutionary and functional studies of the members of RLK superfamily.  相似文献   

5.
Functional analysis of receptor-like kinases in monocots and dicots   总被引:2,自引:0,他引:2  
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.  相似文献   

6.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone.  相似文献   

7.
Receptor-like protein kinases (RLKs) are transmembrane proteins crucial for cell-to-cell and cell-to-environment communications. The extracellular domain of a RLK is responsible for perception of a specific extracellular ligand to trigger a unique intercellular signaling cascade, often via phosphorylation of cellular proteins. The signal is then transduced to the nucleus of a cell where it alters gene expression. There are more than 610 RLKs in Arabidopsis thaliana, only a handful of them have been functionally characterized. This review focuses on recent advances in our understanding of a small group of RLKs named somatic embryogenesis receptor-like protein kinases (SERKs). SERKs act as coreceptors in multiple signaling pathways via their physical interactions with distinct ligand-binding RLKs.  相似文献   

8.
Sasaki G  Katoh K  Hirose N  Suga H  Kuma K  Miyata T  Su ZH 《Gene》2007,401(1-2):135-144
Plant receptor-like kinases (RLKs) comprise a large family with more than several hundred members in vascular plants. The RLK family is thought to have diverged specifically in the plant kingdom, and no family member has been identified in other lineages except for animals and Plasmodium, both of which have RLK related families of small size. To know the time of divergence of RLK family members by gene duplications and domain shufflings, comprehensive isolations of RLK cDNAs were performed from a nonvascular plant, liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii, and Nitella axillaris, thought to be the closest relatives to land plants. We obtained twenty-nine, fourteen, and thirteen RLK related cDNAs from M. polymorpha, C. ehrenbergii, and N. axillaris, respectively. The amino acid sequences of these RLKs were compared with those of vascular plants, and phylogenetic trees were inferred by GAMT, a genetic algorithm-based maximum likelihood (ML) method that outputs multiple trees, together with best one. The inferred ML trees revealed ancient gene duplications generating subfamilies with different domain organizations, which occurred extensively at least before the divergence of vascular and nonvascular plants. Rather it remains possible that the extensive gene duplications occurred during the early evolution of streptophytes. Multicellular-specific somatic embryogenesis receptor kinase (SERK) involved in somatic embryogenesis was found in a unicellular alga C. ehrenbergii, suggesting the evolution of SERK by gene recruitment of a unicellular gene.  相似文献   

9.
S Jeong  A E Trotochaud    S E Clark 《The Plant cell》1999,11(10):1925-1934
The CLAVATA2 (CLV2) gene regulates both meristem and organ development in Arabidopsis. We isolated the CLV2 gene and found that it encodes a receptor-like protein (RLP), with a presumed extracellular domain composed of leucine-rich repeats similar to those found in plant and animal receptors, but with a very short predicted cytoplasmic tail. RLPs lacking cytoplasmic signaling domains have not been previously shown to regulate development in plants. Our prior work has demonstrated that the CLV1 receptor-like kinase (RLK) is present as a disulfide-linked multimer in vivo. We report that CLV2 is required for the normal accumulation of CLV1 protein and its assembly into protein complexes, indicating that CLV2 may form a heterodimer with CLV1 to transduce extracellular signals. Sequence analysis suggests that the charged residue in the predicted transmembrane domain of CLV2 may be a common feature of plant RLPs and RLKs. In addition, the chromosomal region in which CLV2 is located contains an extremely high rate of polymorphism, with 50 nucleotide and 15 amino acid differences between Landsberg erecta and Columbia ecotypes within the CLV2 coding sequence.  相似文献   

10.
《遗传学报》2009,36(1)
Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.  相似文献   

11.
Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.  相似文献   

12.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

13.
Receptor-like protein kinases (RLKs) in plants play major roles in cellular processes and stress responses. Three soybean (Glycine max) orthologs of Arabidopsis thaliana RLK were isolated and designated GmRLK1, GmRLK2, and GmRLK3. GmRLK1, GmRLK2, and GmRLK3 are similar in sequence, with GmRLK2 and GmRLK3 being nearly identical. The deduced amino acid sequences of GmRLK1, GmRLK2, and GmRLK3 possess characteristics of a transmembrane leucine-rich repeat RLK, AtCLV1. DNA fingerprinting and PCR analyses of a bacterial artificial chromosome library identified five GmRLK contigs (I-V): three for GmRLK1 (I, II, and V), one for GmRLK2 (III), and one for both GmRLK2 and GmRLK3 (IV). Phylogenetic analysis of the soybean RLKs together with other plant RLKs indicates that soybean and A. thaliana CLV1s generate a CLV1 branch, while soybean, A. thaliana, and rice RLKs generate an RLK branch. Thus, the AtCLV1 orthologs may have evolved later than the other pathogen-, environmental stress-, plant hormone-, and development-associated RLKs. A common ancestral GmRLK gene may have duplicated to give rise to GmRLK1, GmRLK2, and GmRLK3, or GmRLK2 and GmRLK3 may have resulted from a recent duplication event(s). Several amino acid replacements in the kinase domain of GmRLK1 compared with those of GmRLK2 and GmRLK3 may reflect evolutionary divergence of individual family members.  相似文献   

14.
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation.  相似文献   

15.
16.
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative N-terminal extracellular ligand-binding domains and C-terminal intracellular protein kinase domains. RLKs have been implicated in multiple physiological programs including plant development and immunity to microbial infection. Arabidopsis thaliana gene expression patterns support an important role of this class of proteins in biotic stress adaptation. Here, we provide a comprehensive survey of plant immunity-related RLK gene expression. We further document the role of the Arabidopsis Brassinosteroid Insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) in seemingly unrelated biological processes, such as plant development and immunity, and propose a role of this protein as an adaptor molecule that is required for proper functionality of numerous RLKs. This view is supported by the identification of an additional RLK, PEPR1, and its closest homolog, PEPR2 as BAK1-interacting RLKs.  相似文献   

17.
In plants, several types of receptor-like kinases (RLK) have been isolated and characterized based on the sequence of their extracellular domains. Some of these RLKs have been demonstrated to be involved in plant development or in the reaction to environmental signals. Here, we describe a RLK gene family in wheat (wlrk, wheat leaf rust kinase) with a new type of extracellular domain. A member of this new gene family has previously been shown to cosegregate with the leaf rust resistance gene Lr10. The diversity of the wlrk gene family was studied by cloning the extracellular domain of different members of the family. Sequence comparisons demonstrated that the extracellular domain consists of three very conserved regions interrupted by three variable regions. Linkage analysis indicated that the wlrk genes are specifically located on chromosome group 1 in wheat and on the corresponding chromosomes of other members of the Triticeae family. The wlrk genes are constitutively expressed in the aerial parts of the plant whereas no expression was detected in roots. Protein immunoblots demonstrated that the WLRK protein coded by the Lrk10 gene is an intrinsic plasma membrane protein. This is consistent with the hypothesis that WLRK proteins are receptor protein kinases localized to the cell surface. In addition, we present preliminary evidence that other disease resistance loci in wheat contain genes which are related to wlrk.  相似文献   

18.
The structure of plant receptor-like kinases (RLKs) is similar to that of animal receptor tyrosine kinases (RTKs), and consists of an extracellular domain, a transmembrane span, and a cytoplasmic domain containing the conserved kinase domain. The mechanism by which animal RTKs, and probably plant RLKs, signal includes the dimerization of the receptor, their intermolecular phosphorylation, and the phosphorylation of downstream signalling proteins. However, atypical RTKs with a kinase-dead domain that signal through phosphorylation-independent mechanisms have also been described in animals. In the last few years, some atypical RLKs have also been reported in plants. Here these examples and their possible signalling mechanisms are reviewed. Plant genomes contain a much larger number of genes coding for receptor kinases than other organisms. The prevalence of atypical RLKs in plants is analysed here. A sequence analysis of the Arabidopsis kinome revealed that 13% of the kinase genes do not retain some of the residues that are considered as invariant within kinase catalytic domains, and are thus putatively kinase-defective. This percentage rises to close to 20% when analysing RLKs, suggesting that phosphorylation-independent mechanisms mediated by atypical RLKs are particularly important for signal transduction in plants.  相似文献   

19.
Recent plant genome analyses have revealed a large number of genes encoding receptor-like kinases (RLKs) in plants. Theyare transmembrane proteins structurally related to the animal tyrosine and serin/threonine families with differences in their extracellular domains. There are more than 20 classes of plant RLKs, distinguished according to their extracellular domains, which can potentially bind an array of molecules. Although the majority of these RLKs remains uncharacterized, several members of this family are known to function in a diverse biological processes including plant growth and development, self-incompatibility, hormone perception and plant-microbe interactions. Despite knowledge of RLKs functions is increasing rapidly, yet major challenges remain. These include identifying ligands that activate RLKs and characterizing downstream pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号