首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatic carnitine palmitoyltransferase that is present on the outer surface of the mitochondrial inner membrane demonstrates hyperbolic substrate saturation curves with oleoyl-CoA in both fasted and fed rats. However, the addition of malonyl-CoA resulted in sigmoid substrate saturation curves, suggesting that malonyl-CoA induced the cooperative behavior. There was more of the outer carnitine palmitoyltransferase in liver mitochondria derived from fasted rats and that enzyme had a much greater Ki for malonyl-CoA than the enzyme from fed rats, but the Km values were apparently not different. The Dixon plot with mitochondria from fed rats, but not fasted rats, was curved upward, indicating cooperative inhibition by malonyl-CoA. Carnitine palmitoyltransferase of heart mitochondria had a Ki for malonyl-CoA that was much less than that of the liver enzyme and it did not change on fasting. Furthermore, no evidence for cooperative inhibition was found in the heart. The results of these studies indicate that carnitine palmitoyltransferase is not subject to substrate cooperativity and that malonyl-CoA is not a simple competitive inhibitor of this enzyme but inhibits by a mechanism involving cooperative inhibition. The fasting-feeding cycle induces changes in the liver enzyme that alter its affinity for malonyl-CoA without changing its affinity for its acyl-CoA substrate. Carnitine palmitoyltransferase from heart appears to be different from that of liver and is apparently not subject to the same control mechanisms.  相似文献   

2.
Malonyl-CoA significantly increased the Km for L-carnitine of overt carnitine palmitoyltransferase in liver mitochondria from fed rats. This effect was observed when the molar palmitoyl-CoA/albumin concentration ratio was low (0.125-1.0), but not when it was higher (2.0). In the absence of malonyl-CoA, the Km for L-carnitine increased with increasing palmitoyl-CoA/albumin ratios. Malonyl-CoA did not increase the Km for L-carnitine in liver mitochondria from 24h-starved rats or in heart mitochondria from fed animals. The Km for L-carnitine of the latent form of carnitine palmitoyltransferase was 3-4 times that for the overt form of the enzyme. At low ratios of palmitoyl-CoA/albumin (0.5), the concentration of malonyl-CoA causing a 50% inhibition of overt carnitine palmitoyltransferase activity was decreased by 30% when assays with liver mitochondria from fed rats were performed at 100 microM-instead of 400 microM-carnitine. Such a decrease was not observed with liver mitochondria from starved animals. L-Carnitine displaced [14C]malonyl-CoA from liver mitochondrial binding sites. D-Carnitine was without effect. L-Carnitine did not displace [14C]malonyl-CoA from heart mitochondria. It is concluded that, under appropriate conditions, malonyl-CoA may decrease the effectiveness of L-carnitine as a substrate for the enzyme and that L-carnitine may decrease the effectiveness of malonyl-CoA to regulate the enzyme.  相似文献   

3.
The kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase have been extensively investigated with a semiautomated system and the computer program TANKIN and shown to be sigmoidal with both acyl-CoA and L-carnitine. In contrast, Michaelis-Menten kinetics were found with carnitine octanoyltransferase. The catalytic activity of carnitine palmitoyltransferase is strongly pH dependent. The K0.5 and Vmax are both greater at lower pH. The K0.5 for palmitoyl-CoA is 1.9 and 24.2 microM at pH 8 and 6, respectively. The K0.5 for L-carnitine is 0.2 and 2.9 mM at pH 8 and 6, respectively. Malonyl-CoA (20-600 microM) had no effect on the kinetic parameters for palmitoyl-CoA at both saturating and subsaturating levels of L-carnitine. We conclude that malonyl-CoA is not a competitive inhibitor of carnitine palmitoyltransferase. The purified enzyme contained 18.9 mol of bound phospholipid/mol of enzyme which were identified as cardiolipin, phosphatidylethanolamine, and phosphatidylcholine by thin-layer chromatography. The data are consistent with the conclusion that native carnitine palmitoyltransferase exhibits different catalytic properties on either side of the inner membrane of mitochondria due to its non-Michaelis-Menten kinetic behavior, which can be affected by pH differences and differences in membrane environment.  相似文献   

4.
The data presented herein show that both rough and smooth endoplasmic reticulum contain a medium-chain/long-chain carnitine acyltransferase, designated as COT, that is strongly inhibited by malonyl-CoA. The average percentage inhibition by 17 microM malonyl-CoA for 25 preparations is 87.4 +/- 11.7, with nine preparations showing 100% inhibition; the concentrations of decanoyl-CoA and L-carnitine were 17 microM and 1.7 mM, respectively. The concentration of malonyl-CoA required for 50% inhibition is 5.3 microM. The microsomal medium-chain/long-chain carnitine acyltransferase is also strongly inhibited by etomoxiryl-CoA, with 0.6 microM etomoxiryl-CoA producing 50% inhibition. Although palmitoyl-CoA is a substrate at low concentrations, the enzyme is strongly inhibited by high concentrations of palmitoyl-CoA; 50% inhibition is produced by 11 microM palmitoyl-CoA. The microsomal medium-chain/long-chain carnitine acyltransferase is stable to freezing at -70 degrees C, but it is labile in Triton X-100 and octylglucoside. The inhibition by palmitoyl-CoA and the approximate 200-fold higher I50 for etomoxiryl-CoA clearly distinguish this enzyme from the outer form of mitochondrial carnitine palmitoyltransferase. The microsomal medium-chain/long-chain carnitine acyltransferase is not inhibited by antibody prepared against mitochondrial carnitine palmitoyltransferase, and it is only slightly inhibited by antibody prepared against peroxisomal carnitine octanoyltransferase. When purified peroxisomal enzyme is mixed with equal amounts of microsomal activity and the mixture is incubated with the antibody prepared against the peroxisomal enzyme, the amount of carnitine octanoyltransferase precipitated is equal to all of the peroxisomal carnitine octanoyltransferase plus a small amount of the microsomal activity. This demonstrates that the microsomal enzyme is antigenically different than either of the other liver carnitine acyltransferases that show medium-chain/long-chain transferase activity. These results indicate that medium-chain and long-chain acyl-CoA conversion to acylcarnitines by microsomes in the cytosolic compartment is also modulated by malonyl-CoA.  相似文献   

5.
The overt form of carnitine palmitoyltransferase (CPT1) in rat liver and heart mitochondria was inhibited by DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA. S-Methanesulphonyl-CoA inhibited liver CPT1. The inhibitory potency of DL-2-bromopalmitoyl-CoA was 17 times greater with liver than with heart CPT1. Inhibition of CPT1 by DL-2-bromopalmitoyl-CoA was unaffected by 5,5'-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. In experiments in which DL-2-bromopalmitoyl-CoA displaced [14C]malonyl-CoA bound to liver mitochondria, the KD (competing) was 25 times the IC50 for inhibition of CPT1 providing evidence that the malonyl-CoA-binding site is unlikely to be the same as the acyl-CoA substrate site. Bromoacetyl-CoA inhibition of CPT1 was more potent in heart than in liver mitochondria and was diminished by 5,5'-dithiobis-(2-nitrobenzoic acid) or (in liver) by starvation. Bromoacetyl-CoA displaced bound [14C]malonyl-CoA from heart and liver mitochondria. In heart mitochondria this displacement was competitive with malonyl-CoA and was considerably facilitated by L-carnitine. In liver mitochondria this synergism between carnitine and bromoacetyl-CoA was not observed. It is suggested that bromoacetyl-CoA interacts with the malonyl-CoA-binding site of CPT1. L-Carnitine also facilitated the displacement by DL-2-bromopalmitoyl-CoA of [14C]malonyl-CoA from heart, but not from liver, mitochondria. DL-2-Bromopalmitoyl-CoA and bromoacetyl-CoA also inhibited overt carnitine octanoyl-transferase in liver and heart mitochondria. These findings are discussed in relation to inter-tissue differences in (a) the response of CPT1 activity to various inhibitors and (b) the relationship between high-affinity malonyl-CoA-binding sites and those sites for binding of L-carnitine and acyl-CoA substrates.  相似文献   

6.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) normal rats and of fed and starved thyroidectomized rats. 2. In the fed state thyroidectomy substantially decreased overt carnitine palmitoyltransferase activity and also decreased both the Hill coefficient and the s0.5 when palmitoyl-CoA concentration was varied as substrate. Thyroidectomy did not appreciably alter the inhibitory effect of malonyl-CoA on the enzyme. 3. Starvation increased overt carnitine palmitoyltransferase activity in both the fed and the thyroidectomized state. In percentage terms this response to starvation was substantially greater after thyroidectomy. In both the hypothyroid and normal states starvation decreased sensitivity to inhibition by malonyl-CoA.  相似文献   

7.
A procedure for the purification of the rat liver microsomal carnitine octanoyltransferase (COT) that catalyzes the reversible formation of medium-chain and long-chain acylcarnitines from acyl-coenzyme A is described. The K0.5 for L-carnitine is 0.6 mM and the K0.5 for both decanoyl-CoA and palmitoyl-CoA is 0.6 microM. The Vmax with decanoyl-CoA is approximately fourfold greater than the Vmax with palmitoyl-CoA. The enzyme is monomeric, sodium dodecyl sulfate-polyacrylamide gel electrophoresis gives a molecular weight of 50,100, and molecular sieving gives a molecular weight of 54,300. Purified COT does not cross-react with either antimitochondrial carnitine palmitoyltransferase or antiperoxisomal COT antibodies. It also does not form a covalent adduct when incubated with etomoxiryl-CoA. Microsomal COT is a different protein than either mitochondrial carnitine palmitoyltransferase or peroxisomal COT.  相似文献   

8.
Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in brain mitochondrial fractions were approx. 3-4-fold lower than activities in liver. Estimated Km values of CPT1 and CPT2 (the overt and latent forms respectively of carnitine palmitoyltransferase) for L-carnitine were 80 microM and 326 microM, respectively, and K0.5 values for palmitoyl-CoA were 18.5 microM and 12 microM respectively. CPT1 activity was strongly inhibited by malonyl-CoA, with I50 values (concn. giving 50% of maximum inhibition) of approx. 1.5 microM. In the absence of other ligands, [2-14C]malonyl-CoA bound to intact brain mitochondria in a manner consistent with the presence of two independent classes of binding sites. Estimated values for KD(1), KD(2), N1 and N2 were 18 nM, 27 microM, 1.3 pmol/mg of protein and 168 pmol/mg of protein respectively. Neither CPT1 activity, nor its sensitivity towards malonyl-CoA, was affected by 72 h starvation. Rates of oxidation of palmitoyl-CoA (in the presence of L-carnitine) or of palmitoylcarnitine by non-synaptic mitochondria were extremely low, indicating that neither CPT1 nor CPT2 was likely to be rate-limiting for beta-oxidation in brain. CPT1 activity relative to mitochondrial protein increased slightly from birth to weaning (20 days) and thereafter decreased by approx. 50%.  相似文献   

9.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

10.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

11.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

12.
The requirement for carnitine and the malonyl-CoA sensitivity of carnitine palmitoyl-transferase I (EC 2.3.1.21) were measured in isolated mitochondria from eight tissues of animal or human origin using fixed concentrations of palmitoyl-CoA (50 microM) and albumin (147 microM). The Km for carnitine spanned a 20-fold range, rising from about 35 microM in adult rat and human foetal liver to 700 microM in dog heart. Intermediate values of increasing magnitude were found for rat heart, guinea pig liver and skeletal muscle of rat, dog and man. Conversely, the concentration of malonyl-CoA required for 50% suppression of enzyme activity fell from the region of 2-3 microM in human and rat liver to only 20 nM in tissues displaying the highest Km for carnitine. Thus, the requirement for carnitine and sensitivity to malonyl-CoA appeared to be inversely related. The Km of carnitine palmitoyltransferase I for palmitoyl-CoA was similar in tissues showing large differences in requirement for carnitine. Other experiments established that, in addition to liver, heart and skeletal muscle of fed rats contain significant quantities of malonyl-CoA and that in all three tissues the level falls with starvation. Although its intracellular location in heart and skeletal muscle is not known, the possibility is raised that malonyl-CoA (or a related compound) could, under certain circumstances, interact with carnitine palmitoyltransferase I in non-hepatic tissues and thereby exert control over long chain fatty acid oxidation.  相似文献   

13.
The purpose of this study was to characterize the physical, kinetic, and immunological properties of carnitine acyltransferases purified from mouse liver peroxisomes. Peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase were purified to apparent homogeneity from livers of mice fed a diet containing the hypolipidemic drug Wy-14,643 [( 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]-acetic acid). Both enzymes have a molecular weight of 60,000 and a similar pH optimum. Carnitine octanoyltransferase had a maximum activity for C6 moieties while the maximum for carnitine acetyltransferase was with C3 and C4 moieties. The apparent Km values were between 2 and 20 microM for the preferred acyl-CoA substrates, and the Km values for L-carnitine varied depending on the acyl-CoA cosubstrates used. The Hill coefficient, n, was approximately 1 for all acyl-CoAs tested, indicating Michaelis-Menten kinetics. Carnitine octanoyltransferase retained its maximum activity when preincubated with 5,5'-dithiobis-(2-nitrobenzoate) at pH 7.0 or 8.5. Neither carnitine octanoyltransferase nor carnitine acetyltransferase were inhibited by malonyl-CoA. The immunology of carnitine octanoyltransferase is discussed. These data indicate that peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase function in vivo in the direction of acylcarnitine formation, and suggest that the concentration of L-carnitine could influence the specificity for different acyl-CoA substrates.  相似文献   

14.
Extraction of rat liver mitochondria twice with 0.5% Triton X-100 in a salt-free medium leaves less than 10% of the carnitine palmitoyltransferase membrane bound. The remaining membrane-bound enzyme is inhibited virtually completely by 10 microM malonyl-CoA. Preincubation of the extracted membranes with palmitoyl-CoA and salts (KCI) for several minutes activates the enzyme and makes it increasingly insensitive to malonyl-CoA. Addition of malonyl-CoA to the preincubation reverses this desensitization. In albumin-containing media salts also decrease the binding of palmitoyl-CoA to albumin and stimulate carnitine palmitoyltransferase by increasing substrate availability in free solution. The reverse reaction shows accelerated desensitization by palmitoylcarnitine and resensitization by malonyl-CoA.  相似文献   

15.
1. Liver carnitine acyltransferase activities with palmitoyl-CoA and octanoyl-CoA as substrates and heart carnitine palmitoyltransferase were measured as overt activities in whole mitochondria or in mitochondria disrupted by sonication or detergent treatment. All measurements were made in sucrose/KCl-based media of 300 mosmol/litre. 2. In liver mitochondria, acyltransferase measured with octanoyl-CoA, like carnitine palmitoyltransferase, was found to have latent and overt activities. 3. Liver acyltransferase activities measured with octanoyl-CoA and palmitoyl-CoA differed in their response to changes in [K+], Triton X-100 treatment and, in particular, in their response to Mg2+. Mg2+ stimulated activity with octanoyl-CoA, but inhibited carnitine palmitoyltransferase. 4. The effects of K+ and Mg2+ on liver overt carnitine palmitoyltransferase activity were abolished by Triton X-100 treatment. 5. Heart overt carnitine palmitoyltransferase activity differed from the corresponding activity in liver in that it was more sensitive to changes in [K+] and was stimulated by Mg2+. Heart had less latent carnitine palmitoyltransferase activity than did liver. 6. Overt carnitine palmitoyltransferase in heart mitochondria was extremely sensitive to inhibition by malonyl-CoA. Triton X-100 abolished the effect of low concentrations of malonyl-CoA on this activity. 7. The inhibitory effect of malonyl-CoA on heart carnitine palmitoyltransferase could be overcome by increasing the concentration of palmitoyl-CoA.  相似文献   

16.
1. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities were measured in mitochondria at various acyl-CoA concentrations before and after sonication, thus permitting assessment of both overt and latent activities. 2. Overt carnitine palmitoyltransferase in liver and adipocyte mitochondria and overt carnitine octanoyltransferase in liver mitochondria were inhibited by malonyl-CoA. None of the latent activities were affected by this metabolite. 3. 5,5'-Dithiobis-(2-nitrobenzoic acid) stimulated latent hepatic carnitine palmitoyltransferase at low [palmitoyl-CoA]. 4. Starvation (24 h) decreased overt carnitine palmitoyltransferase activity in adipocyte mitochondria, but did not alter the sensitivity of this activity to malonyl-CoA.  相似文献   

17.
Rates of ketogenesis in mitochondria from fed or starved rats were identical at optimal substrate concentrations, but responded differently to inhibition by malonyl-CoA. Kinetic data suggest that the K1 for malonyl-CoA is greater in the starved animal. These results indicate that, for the regulation of ketogenesis in the starved state, the lower sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA may be more important than the concentration of malonyl-CoA.  相似文献   

18.
Diminished sensitivity of hepatic carnitine palmitoyltransferase to inhibition by malonyl-CoA in the fasting and diabetic states is a well-recognized aspect of the regulatory mechanism forhepatic fatty acid oxidation. Inhibition of myocardial carnitine palmitoyltransferase by malonyl-CoA may play an important role in regulation of fatty acid oxidation in the heart, but there has been a discrepancy in data relating to changes in malonyl-CoA sensitivity of the myocardial carnitine palmitoyltransferase during fasting. Analysis of malonyl-CoA inhibition of myocardial carnitine palmitoyltransferase in fasting and fed states under a variety of conditions has indicated that under no condition could any difference be found in malonyl-CoA sensitivity that was attributable to fasting. Proteolysis of the outer carnitine palmitoyltransferase led to artifactual changes in sensitivity due to the appearance of partial inhibition. We have concluded that the sensitivity of myocardial carnitine palmitoyltransferase to malonyl-CoA does not change during fasting. Changes in fatty acid oxidation in the heart are probably due to changes in malonyl-CoA concentrations or to other inhibitors. (Mol Cell Biochem 116: 39–45, 1992)  相似文献   

19.
The degree of inhibition of CPT I (carnitine palmitoyltransferase, EC 2.3.1.21) in isolated rat liver mitochondria by malonyl-CoA was studied by measuring the activity of the enzyme over a short period (15s) after exposure of the mitochondria to malonyl-CoA for different lengths of time. Inhibition of CPT I by malonyl-CoA was markedly time-dependent, and the increase occurred at the same rate in the presence or absence of palmitoyl-CoA (80 microM), and in the presence of carnitine, such that the time-course of acylcarnitine formation deviated markedly from linearity when CPT I activity was measured in the presence of malonyl-CoA over several minutes. The initial rate of increase in degree of inhibition with time was independent of malonyl-CoA concentration. CPT I in mitochondria from 48 h-starved rats had a lower degree of inhibition by malonyl-CoA at zero time, but was equally capable of being sensitized to malonyl-CoA, as judged by an initial rate of increase of inhibition identical with that of the enzyme in mitochondria from fed rats. Double-reciprocal plots for the degree of inhibition produced by different malonyl-CoA concentrations at zero time for the enzyme in mitochondria from fed or starved animals indicated that the enzyme in the latter mitochondria was predominantly in a state with low affinity for malonyl-CoA (concentration required to give 50% inhibition, I0.5 congruent to 10 microM), whereas that in mitochondria from fed rats displayed two distinct sets of affinities: low (congruent to 10 microM) and high (less than 0.3 microM). Plots for mitochondria after incubation for 0.5 or 1 min with malonyl-CoA indicated that the increased sensitivity observed with time was due to a gradual increase in the high-affinity state in both types of mitochondria. These results suggest that the sensitivity of CPT I in rat liver mitochondria in vitro had two components: (i) an instantaneous sensitivity inherent to the enzyme which depends on the nutritional state of the animal from which the mitochondria are isolated, and (ii) a slow, malonyl-CoA-induced, time-dependent increase in sensitivity. It is suggested that the rate of malonyl-CoA-induced sensitization of the enzyme to malonyl-CoA inhibition is limited by a slow first-order process, which occurs after the primary event of interaction of malonyl-CoA with the mitochondria.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Intact mitochondria and inverted submitochondrial vesicles were prepared from the liver of fed, starved (48 h) and streptozotocin-diabetic rats in order to characterize carnitine palmitoyltransferase kinetics and malonyl-CoA sensitivity in situ. In intact mitochondria, both starved and diabetic rats exhibited increased Vmax., increased Km for palmitoyl-CoA, and decreased sensitivity to malonyl-CoA inhibition. Inverted submitochondrial vesicles also showed increased Vmax. with starvation and diabetes, with no change in Km for either palmitoyl-CoA or carnitine. Inverted vesicles were uniformly less sensitive to malonyl-CoA regardless of treatment, and diabetes resulted in a further decrease in sensitivity. In part, differences in the response of carnitine palmitoyltransferase to starvation and diabetes may reside in differences in the membrane environment, as observed with Arrhenius plots, and the relation of enzyme activity and membrane fluidity. In all cases, whether rats were fed, starved or diabetic, and whether intact or inverted vesicles were examined, increasing membrane fluidity was associated with increasing activity. Malonyl-CoA was found to produce a decrease in intact mitochondrial membrane fluidity in the fed state, particularly at pH 7.0 or less. No effect was observed in intact mitochondria from starved or diabetic rats, or in inverted vesicles from any of the treatment groups. Through its effect on membrane fluidity, malonyl-CoA could regulate carnitine palmitoyltransferase activity on both surfaces of the inner membrane through an interaction with only the outer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号