首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.  相似文献   

2.
In vitro whole-embryo culture of chick embryos, originally invented by New, has been widely used for studies of early embryogenesis. Here, a method for electroporation using the New culture and its derivatives is described, to achieve misexpression of exogenous gene in a temporally and spatially controlled manner in gastrulating chick embryos. Detailed information for the devices and procedures, and some experimental examples are presented.  相似文献   

3.
4.
G J Kesby 《Teratology》1992,45(3):293-301
This study examines the use of heparin-plasma as a culture medium for mammalian postimplantation whole-embryo culture. The growth and differentiation of head-fold rat embryo explants over 48 hours in a standard serum medium was compared with development of same stage explants over 48 hours in a plasma medium prepared using sodium heparin. Heparin disrupted the morphological differentiation of embryos, in a concentration-dependent manner, from 25 micrograms sodium heparin/ml media (i.e., 5 IU/ml media), with overall embryo growth being adversely affected from a concentration of 200 micrograms sodium heparin/ml media (i.e., 40 IU/ml media). Defects of cranial neural tube development were the first apparent structural anomalies resulting from culture in heparin media. Forebrain development was grossly abnormal and associated with failure of eye development. As the heparin concentration in media increased, the cephalic neural folds remained widely open and the edges became increasingly everted, although differentiation of the heart, otic primordia, and pharyngeal arch persisted. Similar concentration-dependent dysmorphogenic effects were seen when embryos were cultured in the standard serum media with added heparin. A minimum heparin concentration of 100 micrograms sodium heparin/ml media (i.e., 20 IU/ml media) was required to effectively inhibit coagulation of the plasma medium over the 48 hour culture period. Although embryonic growth was not adversely affected at this heparin concentration, morphological differentiation was severely disrupted. Therefore, heparin is not a suitable anticoagulant for the preparation of plasma for use in postimplantation whole-embryo culture.  相似文献   

5.
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.  相似文献   

6.
The vascular smooth muscle cell (VSMC) is surrounded by a complex extracellular matrix that provides and modulates a variety of biochemical and mechanical cues that guide cell function. Conventional two-dimensional monolayer culture systems recreate only a portion of the cellular environment, and therefore there is increasing interest in developing more physiologically relevant three-dimensional culture systems. This review brings together recent studies on how mechanical, biochemical, and extracellular matrix stimulation can be applied to study VSMC function and how the combination of these factors leads to changes in phenotype. Particular emphasis is placed on in vitro experimental studies in which multiple stimuli are combined, especially in three-dimensional culture systems and in vascular tissue engineering applications. These studies have provided new insight into how VSMC phenotype is controlled, and they have underscored the interdependence of biochemical and mechanical signaling. Future improvements in creating more complex in vitro culture environments will lead to a better understanding of VSMC biology, new treatments for vascular disease, as well as improved blood vessel substitutes.  相似文献   

7.
DM1 complicated with pregnancy is the cause of neonatal malformations and low-for-gestational-age neonates. With the use of the whole-embryo culture system, it has been demonstrated that high glucose causes embryo dysmorphogenesis. Previously, our group has found that spermidine or spermine addition reverts almost fully the severity and frequency of dysmorphogenesis, whereas the effect of arginine and putrescine it is only partial. A hypothesis for polyamine mechanism is the amelioration of oxidative stress caused by high glucose. The purpose of this work was to evaluate the effect of polyamines over the activity of scavenging enzymes and lipoperoxidation in whole-embryo rat in culture. Post-implantation (gestational day 10.5) rat embryos were cultured for 24?h in normal medium or hyperglycemic medium, alone or supplemented with l-arginine or polyamine. Embryos were recovered and visualized, and morphologic parameters were registered. Cultured embryos were homogenized, and superoxide dismutase and glutathione-reductase activities, as well as lipoperoxidation, were measured. The activity of superoxide dismutase and glutathione peroxidase were not affected by the treatment, but lipoperoxidation was increased in embryos cultured in hyperglycemic medium; spermidine or spermine supplementation restore lipoperoxidation to near-normal values, and putrescine and l-arginine reverts only partially the glucose effect. Taken together, these results pointed out that spermidine and spermine embryoprotection could be mediated by direct antioxidant activity. However, further studies are needed to support this hypothesis.  相似文献   

8.
Caspase-8 plays the role of initiator in the caspase cascade and is a key molecule in death receptor-induced apoptotic pathways. To investigate the physiological roles of caspase-8 in vivo, we have generated caspase-8-deficient mice by gene targeting. The first signs of abnormality in homozygous mutant embryos were observed in extraembryonic tissue, the yolk sac. By embryonic day (E) 10.5, the yolk sac vasculature had begun to form inappropriately, and subsequently the mutant embryos displayed a variety of defects in the developing heart and neural tube. As a result, all mutant embryos died at E11.5. Importantly, homozygous mutant neural and heart defects were rescued by ex vivo whole-embryo culture during E10.5-E11.5, suggesting that these defects are most likely secondary to a lack of physiological caspase-8 activity. Taken together, these results suggest that caspase-8 is indispensable for embryonic development.  相似文献   

9.
Planar-cell-polarity (PCP) signalling is necessary for initiation of neural tube closure in higher vertebrates. In mice with PCP gene mutations, a broad embryonic midline prevents the onset of neurulation through wide spacing of the neural folds. In order to evaluate the role of convergent extension in this defect, we vitally labelled the midline of loop-tail (Lp) embryos mutant for the PCP gene Vangl2. Injection of DiI into the node, and electroporation of a GFP expression vector into the midline neural plate, revealed defective convergent extension in both axial mesoderm and neuroepithelium, before the onset of neurulation. Chimeras containing both wild-type and Lp-mutant cells exhibited mainly wild-type cells in the midline neural plate and notochordal plate, consistent with a cell-autonomous disturbance of convergent extension. Inhibitor studies in whole-embryo culture demonstrated a requirement for signalling via RhoA-Rho kinase, but not jun N-terminal kinase, in convergent extension and the onset of neural tube closure. These findings identify a cell-autonomous defect of convergent extension, requiring PCP signalling via RhoA-Rho kinase, during the development of severe neural tube defects in the mouse.  相似文献   

10.
This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes from preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Proteomic analysis of the Gallus gallus embryo at stage-29 of development   总被引:1,自引:0,他引:1  
The chicken (Gallus gallus) is one of the primary models for embryological and developmental studies. In order to begin to understand the molecular mechanisms underlying the normal and abnormal development of the chicken, we used 2-DE to construct a whole-embryo proteome map. Proteins were separated by IEF on IPG strips, and by 11% SDS-PAGE) gels. Protein identification was performed by means of PMF with MALDI-TOF-MS. In all, 105 protein spots were identified, 35 of them implicated in embryo development, 10 related with some diseases, and 16, finally, being proteins that have never been identified, purified or characterized in the chicken before. This map will be updated continuously and will serve as a reference database for investigators, studying changes at the protein level under different physiological conditions.  相似文献   

12.
Organ culture systems have proven extremely useful techniques in studies that investigate the process of normal and abnormal development. The explant of tissues into an organ culture system is one of the few techniques that maintains three-dimensional cellular interactions under conditions that simultaneously permit controlled experimental manipulation in vitro. In this article we outline a procedure for growing "faces" in culture. In this system, the facial primordia prepared from embryonic mice or chicks can be maintained in culture for up to 7--8 days. During this time, the facial primordia continue to grow, differentiate, fuse and develop into organized structures that closely resemble those observed in situ. The procedure is relatively simple, requiring only a stable substratum, culture medium, sufficient oxygenation and incubation of the organ system at 37 degrees C. The advantages and disadvantages of the procedure are presented, along with detailed methods to help troubleshoot some of the common pitfalls of organ culture systems.  相似文献   

13.
A detailed report is presented on the performance of the postimplantation rat whole-embryo culture (WEC) test in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the WEC test can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.  相似文献   

14.
Plants generate various tissues and organs via a strictly regulated developmental program. The plant vasculature is a complex tissue system consisting of xylem and phloem tissues with a layer of cambial cells in between. Multiple regulatory steps are involved in vascular development. Although molecular and genetic studies have uncovered a variety of key factors controlling vascular development, studies of the actual functions of these factors have been limited due to the inaccessibility of the plant vasculature. Thus, to obtain a different perspective, culture systems have been widely used to analyze the sequential processes that occur during vascular development. A tissue culture system known as VISUAL, in which molecular genetic analysis can easily be performed, was recently established in Arabidopsis thaliana. This reconstitutive approach to vascular development enables this process to be investigated quickly and easily. In this review, I summarize our recent knowledge of the regulatory mechanisms underlying vascular development and provide future perspectives on vascular analyses that can be performed using VISUAL.  相似文献   

15.
Commercial production of microalgae: ponds, tanks, tubes and fermenters   总被引:17,自引:0,他引:17  
The commercial culture of microalgae is now over 30 years old with the main microalgal species grown being Chlorella and Spirulina for health food, Dunaliella salina for β-carotene, Haematococcus pluvialis for astaxanthin and several species for aquaculture. The culture systems currently used to grow these algae are generally fairly unsophisticated. For example, Dunaliella salina is cultured in large (up to approx. 250 ha) shallow open-air ponds with no artificial mixing. Similarly, Chlorella and Spirulina also are grown outdoors in either paddle-wheel mixed ponds or circular ponds with a rotating mixing arm of up to about 1 ha in area per pond. The production of microalgae for aquaculture is generally on a much smaller scale, and in many cases is carried out indoors in 20–40 l carboys or in large plastic bags of up to approximately 1000 l in volume. More recently, a helical tubular photobioreactor system, the BIOCOIL™, has been developed which allows these algae to be grown reliably outdoors at high cell densities in semi-continuous culture. Other closed photobioreactors such as flat panels are also being developed. The main problem facing the commercialisation of new microalgae and microalgal products is the need for closed culture systems and the fact that these are very capital intensive. The high cost of microalgal culture systems relates to the need for light and the relatively slow growth rate of the algae. Although this problem has been avoided in some instances by growing the algae heterotrophically, not all algae or algal products can be produced this way.  相似文献   

16.
The temporal and spatial distribution of the basement membrane component laminin was examined in vivo in developing rat hearts at 11.5 and 15 days of embryonic development (ED), and in neonates and adults, by pre-embedding ultrastructural immunocytochemistry. In addition, the patterns observed at 11.5 days ED were compared to the distribution of laminin in embryos maintained in whole-embryo culture. At 11.5 days ED laminin was localized in punctate patches on the surface of the plasma membrane, with large gaps between areas of staining. The development of myocytes and localization of laminin in the whole embryo-cultured embryos was similar to that found in the in vivo embryos. At 15 days ED, laminin localization was limited to distinct patches of developing extracellular matrix material associated with the sarcolemma. Gaps between areas of localization were shorter than in the 11.5-day hearts. In neonates, distribution of laminin localization was more extensive with fewer gaps and was associated with the developing basement membrane. In adult hearts, laminin was localized along the entire length of the basement membrane and was heaviest in areas of morphological specialization, such as Z-bands, where collagen bundles contacted the sarcolemma.  相似文献   

17.
Infectious diseases represent a continuously growing menace that has severe impact on health of the people worldwide, particularly in the developing countries. Therefore, novel prevention and treatment strategies are urgently needed to reduce the rate of these diseases in humans. For this reason, different options can be considered for the production of affordable vaccines. Plants have been proved as an alternative expression system for various compounds of biological importance. Particularly, plastid genetic engineering can be potentially used as a tool for cost-effective vaccine production. Antigenic proteins from different viruses and bacteria have been expressed in plastids. Initial immunological studies of chloroplast-derived vaccines have yielded promising results in animal models. However, because of certain limitations, these vaccines face many challenges on production and application level. Adaptations to the novel approaches are needed, which comprise codon usage and choice of proven expression cassettes for the optimal yield of expressed proteins, use of inducible systems, marker gene removal, selection of specific antigens with high immunogenicity and development of tissue culture systems for edible crops to prove the concept of low-cost edible vaccines. As various aspects of plant-based vaccines have been discussed in recent reviews, here we will focus on certain aspects of chloroplast transformation related to vaccine production against human diseases.  相似文献   

18.
We compared in rat whole-embryo culture the morphological changes elicited by valproic acid (VPA) with those elicited by trans-retinoic acid (RA). Rat embryos explanted on day 9.5 of gestation were treated on day 10 with RA or VPA at concentrations producing equivalent reductions in embryonic protein. The concentrations selected for morphological assessment by scanning and transmission electron microscopy, 2.3 and 800 microM, respectively, for RA and VPA, produced approximately a 50% incidence of abnormally open anterior neuropores in initial range-finding experiments in the culture system. Protein and DNA analyses were also performed on corresponding groups of embryos at three different doses. With concurrent control groups used as reference standards, the two treatment groups were compared for differences in external and internal morphology, protein and DNA contents, and growth indices. While certain variables responded similarly in the two treatment groups, e.g., the growth variables, protein and DNA contents, each drug produced selective morphological effects. Whereas treatment with RA produced underdeveloped branchial arches, symmetrically cleft cranial defects resulting in openings in rhombencephalic and prosencephalic regions, and exteriorized neural tissue in the caudal neuropore region, VPA produced irregular clefts with wavy margins along the entire length of the neural tube, and an open caudal neuropore without eversion of the neuroepithelium, while producing no detectable effect on the branchial arches. The similar effects of these two drugs on protein and DNA contents suggest comparable degrees of overall toxicity; however, the dissimilar effects on neural tube and branchial arches, coupled with the large difference in concentration of the drug required to produce the effects, add to the evidence that their mechanisms for elicitation of abnormal development are qualitatively different.  相似文献   

19.
The liver was used widely in early studies of polarised transport but has been largely overlooked in recent years, mostly because of the development of epithelial cell lines which provide more tractable experimental systems. The majority of membrane proteins and lipids reach the hepatocyte apical membrane by transcytosis and it remains unclear whether there is a direct route for apical targeting, although the pathways present have yet to be fully characterised. The recent development of systems that allow hepatocyte transport processes to be studied in culture and the observation that transcytosis can be significantly stimulated under physiological conditions suggest that hepatocytes have a role to play in future studies of polarised transport. This review discusses the known features of polarised membrane traffic in hepatocytes and contrasts them with the characteristics of vesicular transport in other epithelial cell types.  相似文献   

20.
Alkaline deoxyribonucleases (DNAse) have been studied in homogenates of Paracentrotus lividus embryos at different stages of development using polyacrylamide disc gel electrophoresis. The electrophoretic pattern, consisting of two bands of DNAse activity, does not change throughout development. Moreover, a comparison of the thermal inactivation kinetics and of the effect of divalent cations on the degradation of native and denatured DNA indicates that the same type of DNAse activity is present during development. Nuclear and mitochondrial extracts contain DNAse with a specific activity 4–5 times higher than that present in the whole-embryo homogenates. The enzymes from the two sources, however, do not differ remarkably, as is shown by the similarity of the electrophoretic pattern and by the behaviour in the presence of divalent cations. Analysis of the digestion products shows that both nuclear and mitochondrial extracts bring about endonucleolytic degradation of DNA used as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号