首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Apell  H. -J.  Bamberg  E.  Alpes  H.  Läuger  P. 《The Journal of membrane biology》1977,31(1):171-188
Summary O-pyromellitylgramicidin is a derivative of gramicidin in which three carboxyl groups are introduced at the terminal hydroxyl end of the peptide. Experiments with artificial lipid membranes indicate that this negatively charged analog forms ion-permeable channels in a way similar to that of gramicidin. If O-pyromellitylgramicidin is added to only one aqueous solution, the membrane conductance remains small, but increases by several orders of magnitude if the same amount is also added to the other side. In accordance with the dimer model of the channel, the membrane conductance under symmetrical conditions is proportional to the square of the aqueous concentration of O-pyromellitylgramicidin over a wide range. The ratio PG/ G of the single-channel conductance of O-pyromellitylgramicidin to that of gramicidin is close to unity at high ionic strength, but increases more than fivefold at smaller ionic strength (0.01m). This observation is explained in terms of an electrostatic effect of the fixed negative charges localized near the mouth of the channel. In a mixture of O-pyromellitylgramicidin and gramicidin, unit conductance steps of intermediate size are observed in addition to the conductance steps corresponding to the pure compounds, indicating the formation of hybrid channels. Hybrid channels with preferred orientation may be formed if small amounts of gramicidin and O-pyromellitylgramicidin are added to opposite sides of the membrane. These hybrid channels show a distinct asymmetry in the current-voltage characteristic.  相似文献   

2.
Summary Different succinyl derivatives of Gramicidin A were synthesized and their activity was investigated with different methods on lipid bilayer membranes. The succinyl derivatives of Gramicidin A can be classified as three different types, the O-succinyl derivative, the N-succinyl derivative and the N-O-succinyl derivative of Gramicidin A. An O-pyromellityl-N-succinyl gramicidin was synthesized which can be attributed to the latter class. It was found that O-succinyl gramicidin behaves like the unmodified Gramicidin A despite a charge effect on single-channel conductance, arising from the negative charge of the succinic residue, at the mouth of the channel. The activity of N-succinyl and N-O-succinyl gramicidin and of O-pyromellityl-N-succinyl-gramicidin depends strongly on the pH of the electrolyte solution. It is demonstrated that at low pH (5) the N-succinyl derivatives show high activity, whereas at high pH (7) the activity is sharply reduced or disappears totally. From these experiments it can be concluded that, for the formation of a dimeric gramicidin channel, the hydrogen of the formyl group can be replaced by a protonated carboxylic group of a succinic residue.Further results, obtained by measurement of the single-channel conductance and of the reaction rate constants for the channel formation, are discussed in terms of the structural basis of the single stranded model for the gramicidin channel. On this basis the double stranded helix can be, excluded and an interesting head-to-head single stranded (L,D) helical channel is described which contains carboxyl groups at the head-to-head junction.  相似文献   

3.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

4.
Single-channel conductance fluctuations are analysed for gramicidin A incorporated into binary-mixed black lipid membranes of charged phosphatidic acid and neutral lecithin in different molar ratios. At very low Ca++ concentrations in the electrolyte (i.e. in the presence of EDTA) homogeneous lipid mixtures are identified through their conductance and life time probability distributions for integral gramicidin pores. As for the pure lipid components, the conductance histograms each show a single maximum with regular width and for all channels a single mean lifetime is found.For Ca++-levels (10-6–10-5 M) that are close to the critical demixing concentration (10-4 M) unusually broad conductance distributions and reduced lifetimes are found provided the PC content, x, of the membrane is close to the critical mixture (x crit0.5). We interpret this as a first example of the coupling of a membrane function (the transport of ions) to a lipid matrix with locally fluctuating composition close to a critical demixing point.For the conductance histogram of gramicidin A in an equimolar mixture of PA and PC shows two well-separated maxima. A correlation analysis between conductance and lifetime of the single pores shows that the two channel populations also differ significantly in their mean channel lifetime, *. This finding is interpreted as being direct evidence for Ca++-induced lateral phase separation in black lipid membranes, as has been postulated recently.Abbreviations used HEPES N-2-hydroxyethyl-piperazine-N-2-ethane-sulfonic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

5.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

6.
The channel forming properties of synthetic gramicidin A and dLeu2-gramicidin A were compared in black lipid membranes. The most probable single channel conductance was identical for both derivatives but in each case a distribution of smaller channel sizes was observed. However, the lifetime of the channel formed by dLeu2-gramicidin A was considerably shorter than for gramicidin A. The dLeu2 substitution is considered to interfere with the head to head hydrogen bonding which forms the conducting dimer, thus destabilizing the dimeric structure of the channel and reducing the lifetime. This represents the first demonstration of side-chain modulation of channel lifetime.  相似文献   

7.
Summary According to the model of Urry, the cation-permeable gramicidin channel is a dimeric helix formed by association of two peptide monomers linked at their amino ends. In this paper the channel properties of gramicidin analogs are described which have been obtained by chemical modification at the coupling site of the two half-channels. In these analogs the amino terminal-CHO group is replaced by-CO(CH2) n COOH(n=2, 3, 4, 5, 6). All analogs form conducting channels in black lipid membranes with the same general properties as found for gramicidin A. The observation that the channel-forming activity decreases with increasing pH is consistent with the notion that the half-channels are linked at the amino terminus. The channel lifetime of the different analogs varies between 2 msec and 50 sec, the longest lifetime being found for the compound withn=3. The single-channel conductance is always smaller than that of gramicidin A, but the reduction of depends on the nature of the permeable ion. Ion specificity was studied at 1m electrolyte by measuring the conductance for different permeable ions (Na+, K+, Cs+). The conductance ratio(Cs+)/(Na+) was found to vary between 2 and 10.5 for the different analogs.  相似文献   

8.
9.
Summary The effect of the pore-forming antibiotic gramicidin on pure lipid membranes is well characterized. We studied its action in protein-rich thylakoid membranes that contain less than 25% (wt/wt) acyl lipids. A transmembrane voltage was induced by flashing light, and its decay was measured and interpreted to yield the distribution of gramicidin over thylakoids, its dimerization constant and its single-channel conductance in this membrane. The distribution of gramicidin over the ensemble of thylakoids was immediately homogeneous when the antibiotic was added under stirring, while it became homogeneous only after 20 min in a stirred suspension that was initially heterogeneous. The dimerization constant, 5×1014 cm2/mol, was about 10 times larger than in pure lipid membranes. This was attributed to the upconcentration of gramicidin in the small fractional area of protein free lipid bilayer and further by a preference of gramicidin for stacked portions of the membrane. The latter bears important consequences with regard to bioenergetic studies with this ionophore. As gramicidin was largely dimerized from a concentration of 1 nm (in the suspension) on, the membrane's conductance then increased linearly as a function of added gramicidin. When the negative surface potential at the thylakoid membrane was screened, the conductance of a single gramicidin dimer agreed well with figures reported for bilayers from neutral lipid (about 0.5 pS at 10 mm NaCl). The modulation of the conductance by the surface potential in spinach versus pea thylakoids and between different preparations is discussed in detail.We would like to thank Ms. H. Kenneweg for photographs. financial support by the DFG (SFB 171/B3) is gratefully acknowledged.This paper is dedicated to the Late Prof. Peter Läger.  相似文献   

10.
Summary A study of the temperature dependence of gramicidin A conductance of K+ in diphytanoyllecithin/n-decane membranes shows the plot of In (single channel conductance) as a function of reciprocal temperature to be nonlinear for the most probable set of conductance, states. These results are considered in terms of a series of barriers, of the dynamics of channel conformation,vis-a-vis the peptide libration mechanism, and of the effect of lipid viscosity on side chain motions again as affecting the energetics of peptide libration.  相似文献   

11.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

12.
Gramicidin A is a linear polypeptide antibiotic that facilitates the diffusion of monovalent cations across lipid bilayer membranes by forming channels. It has been proposed that the conducting channel is a dimer which is in equilibrium with nonconducting monomers in the membrane. To directly test this model in several independent ways, we have prepared and purified a series of gramicidin C derivatives. All of these derivatives are fully active analogs of gramicidin A, and each derivative has a useful chromophore esterified to the phenolic hydroxyl of tyrosine #11. Simultaneous conductance and fluorescence measurements on planar lipid bi-layer membranes containing dansyl gramicidin C yielded four conclusions: (1) A plot of the logarithm of the membrane conductance versus the logarithm of the membrane fluorescence had a slope of 2.0 ± 0.3, over a concentration range for which nearly all the gramicidin was monomeric. Hence, the active channel is a dimer of the nonconducting species. (2) In a membrane in which nearly all of the gramicidin was dimeric, the number of channels was approximately equal to the number of dimers. Thus, most dimers are active channels and so it should be feasible to carry out spectroscopic studies of the conformation of the transmembrane channel. (3) The association constant for dimerization is more than 1,000-fold larger in a glycerolester membrane with 26 Å-hydrocarbon thickness than in a 47 Å-glycerolester membrane. The dimerization constant in a 48 Å-phosphatidyl choline membrane was 200 times larger than in a 47 Å-glycerolester membrane, showing that it depends on the type of lipid as well as on the thickness of the hydrocarbon core. (4) We were readily able to detect 10?14 mole cm?2 of dansyl gramicidin C in a bilayer membrane, which corresponds to 60 fluorescent molecules per square μm. The fluorescent techniques described here should be sufficiently sensitive for fluorescence studies of reconstituted gates and receptors in planar bilayer membranes. An alternative method of determining the number of molecules of gramicidin in the channel is to measure the fraction of hybrid channels present in a mixture of 2 chemically different gramicidins. The single-channel conductance of p-phenylazo-benzene-sulfonyl ester gramicidin C (PABS gramicidin C) was found to be 0.68 that of gramicidin A. In membranes containing a mixture of these 2 gramicidins, a hybrid channel was evident in addition to 2 pure channels. The hybrid channel conductance was 0.82 that of gramicidin A. Fluorescence energy transfer from dansyl gramicidin C to diethylamino-phenylazobenzene-sulfonyl ester gramicidin C (DPBS gramicidin C), provided an independent way to measure the fraction of hybrid channels on liposomes. For both techniques the fraction of hybrid channels was found to be 2ad where a2 and d2 were the fractions of the 2 kinds of pure channels. This result strongly supports a dimer channel and the hybrid data excludes the possibility of a tetramer channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes. The various models which have been proposed for the conformation of the gramicidin transmembrane channel are briefly discussed.  相似文献   

13.
Internal perfusion of tetraethylammonium ions (TEA) in squid axons produces a significant high frequency noise component. Although internal TEA suppresses the potassium conductance (G K) noise at relatively low frequencies, it induces high frequency noise which exceeds the intensity of the normal potassium and sodium noise. In addition, the induced noise is dependent on the presence of internal potassium ions (K+) suggesting that this source of noise arises from a modulation of the K+ conductance due to the blocking and unblocking of the K+ channel. The simplest model describing the TEA data is a two-step sequential pseudo-unimolecular reaction where TEA binds during an open conductance state. A unit channel conductance of 2 pS is estimated from the TEA data as well as noise induced by triethyldecylammonium (TEDA) ions. Thus, these data are consistent with the hypothesis that the channel is blocked whenever the quaternary ammonium ion binding site, located near or within the K+ channel, is occupied.  相似文献   

14.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

15.
Summary Freshly isolated epithelial cells from hen colon were investigated using the patch-clamp technique. The aim of this investigation was to characterise the cellular conducting site for Cl- secretion. In cell-attached mode two types of Cl--channels were found. Both showed distinct outward rectification. The channel types differed in single channel conductances and the marked voltage dependence of the open probabilities. A low conductance Cl--channel was observed with a mean conductance at negative holding potentials of g-=9 pS, and of g+=34 pS at positive potentials. This channel was predominantly open at negative potentials, corresponding to cell hyperpolarization. The second channel type observed had conductances of g-=35 pS and g+=77 pS, and showed increasing open probabilities with increasing holding potentials (cell depolarisation). Both channel types were blockable by the Cl--channel blocker NPPB. These data in combination with previously published transepithelial transport data on hen colon indicate that these channels are the Cl- secretory sites in colon epithelium.Abbreviations DNSO dimethylsulfoxide - EGTA ethyleneglycol triacetic acid - g+, g- single channel conductance at positive and negative voltages - HEPES N-(2-hydroxy-ethyl)piperazine-N-(2-ethane-sulfonic acid) - i single channel current - NMDG N-methyl-d-glucosamine - NPPB 5-hitro-2-(3-phenylpropylamino)-benzoate - Po open probability - Vp holding potential  相似文献   

16.
Osmotic jump experiments were used to measure the ionic permeability induced in lipid vesicles by Megathura crenulata hemocyanin. It was found that this protein strongly increases the conductance of K+ and Cl- through these membranes but not that of SO 4 = . These effects were attributed to the formation of ionic channels in the vesicles. We have found that a simple first-order binding model can explain the dependence of the number of pore-containing vesicles both on the time after exposure to hemocyanin and on the protein concentration. Milder effects were attributed to a non-specific adhesion of the protein to the membrane surface. Consistent with the hypothesis of reversible association, vesicles which retained hemocyanin after step sucrose density gradient centrifugation at low ionic strength, lost most of the protein upon recentrifugation at high ionic strength. Consistent with the hypothesis of channel formation bot the above vesicle preparations transferred voltage-dependent hemocyanin channels into planar bilayers when they were made to fuse with them. It is concluded that hemocyanin can interact both specifically, by forming pores within the hydrophobic core of lipid membranes, and non-specifically, probably by means of electrostatic interaction with the surface of the same membrane.Abbreviations Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - DOC sodium deoxycholate  相似文献   

17.
The symbiotic membrane between N2-fixing bacteroids and plant cytoplasm in nodules of soybean contains a sub-picoSiemen cation channel permeable to NH4+. With millimolar concentrations of Ca2+ or Mg2+ on the cytoplasmic side, the channel rectifies current in the direction of cation influx to the cytoplasm. When Ca2+ is present on the bacteroid side of the membrane the current is rectified in the opposite direction. With submicromollar concentrations of divalent on both sides, the channel no longer rectifies. The channel is inhibited by verapamil on the bacteroid side of the membrane with a Kd of 2.6 μM. In the presence of millimolar concentrations of divalents on the cytoplasmic side, the conductance as a function of voltage is fitted by a simple Boltzmann equation with an effective gating charge equal to one. The voltage at which the conductance reaches 50% of maximum is dependent on external NH4+, shifting negative at lower concentrations. The time-course of activation upon hyperpolarisation can be described by the Hodgkin-Huxley equation with Ca2+present on the cytoplasmic side. With Mg2+ the channel activates with single exponential kinetics. The time constant for activation is weakly voltage dependent. Upon depolarisation of the membrane the channel deactivates with double exponential kinetics, the time constants being slightly voltage dependent. We propose a model of the channel in which divalent block is relieved when the blocking ion is dislodged by univalent cation flux into the pore. Mg2+ on the cytoplasmic side may function in vivo as the gating particle of the channel.  相似文献   

18.
In order to elucidate the role of the aromatic side-chains in the mechanism of transduction of monovalent cations through the channel of linear gramicidin, two series of analogues containing non-coded aromatic amino acids were synthesized. In the first series, the four tryptophans were replaced by either four L-3-(8-quinolyl)alanyl or four L-3-(4-quinolyl)alanyl residues and single channel conductance measurements showed that these substitutions led to a strong lowering of the channel conductance, which is attributed to a modification of the orientation of the aromatic side-chains due to an increase of their hydrophobicity. In the second series, the analogues contained both tryptophyl and naphthylalanyl residues in various amounts and positions. The single channel conductance data indicated that the conductance was mainly governed by the number of polar residues (Trp) and not by their positions. The conformational consequences of these results are discussed together with their influence on the energy profile of the gramicidin channel.  相似文献   

19.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

20.
A mechanism of how polyanions influence the channel formed by Staphylococcus aureus α-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC50, nearly 104-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the ζ-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca2+-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of α-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号