首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
10 nm filaments in normal and transformed cells.   总被引:84,自引:0,他引:84  
R O Hynes  A T Destree 《Cell》1978,13(1):151-163
An antibody was raised against an electrophoretically homogeneous protein from cultured fibroblasts and shown to be directed against 10 nm filaments. The antiserum did not stain microtubules or actin microfilaments. The distribution of 10 nm filaments in normal cells was studied during growth, spreading, locomotion, mitosis, and after treatment with colchicine and cytochalasin B. The 58,000 dalton subunit protein is apparently all polymerized in the filaments which are insoluble in nonionic detergent. The distribution of 10 nm filaments is altered by colchicine treatments which disrupt microtubules. The organization of 10 nm filaments is altered in transformed cells.  相似文献   

4.
5.
Classes of distinguishable 10 nm cytoplasmic filaments   总被引:10,自引:0,他引:10  
The protein subunits from the 10 nm diameter filaments from chicken neurons and smooth muscle cells have similar mobilities on detergent-polyacrylamide gels but they are distinguished by their tryptic and chymotryptic peptide maps.  相似文献   

6.
W E Gordon  A Bushnell  K Burridge 《Cell》1978,13(2):249-261
An antiserum has been found in a nonimmunized rabbit which reacts strongly with a system of filaments in various fibroblasts, epithelial cells, macrophages and neuroblastoma. These filaments are distinct from the actin microfilament bundles visualized by an antibody against actin, and they are not affected by brief treatment with cytochalasin B. The pattern of these filaments somewhat resembles that described for microtubules, but the filaments could be clearly distinguished from microtubules by a comparison of their respective immunofluorescent patterns during cell division. In response to the drugs colcemid and vinblastine, the filaments reacting with this preimmune serum condense to form a compact perinuclear coil of fibers, a distribution and behavior in agreement with that previously described for the 10 nm or intermediate filaments studied by electron microscopy. Further evidence supporting our conclusion that this antiserum reacts with intermediate filaments is provided by a comparison of electron micrographs and the immunofluorescent patterns from parallel cell cultures. To identify the antigens reacting with this antiserum we have used the new technique of immuno-autoradiography on SDS gels of whole cell extracts. Two reactive polypeptide chains have been identified with apparent molecular weights of 56,000 and 30,000 daltons.  相似文献   

7.
The intermediate filament proteins desmin and vimentin from pregnant and non-pregnant uterine muscle and smooth-muscle cells in culture were analysed using SDS/PAGE. The desmin content in uterine muscle increases dramatically during pregnancy, whereas vimentin remains unchanged or changes very little. When muscle cells are kept in culture, a considerable increase in vimentin content is observed as compared with vimentin in freshly isolated non-pregnant uterine tissue. Our results strengthen the view that vimentin and desmin filaments have independent function and turnover, and point to a predominantly structural role for desmin filaments.  相似文献   

8.
Comparison of 10 nm filaments from three bovine tissues   总被引:4,自引:0,他引:4  
Enriched fractions of 10 nm filaments were isolated from three bovine tissues and were compared using morphological biochemical, and immunological techniques. We studied keratin filaments from hoof epidermis, 10 nm filaments from corneal epithelium, and 10 nm filaments from brain white matter. The parameters of comparison and results were as follows.
1. 1. Corneal epithelial filaments and keratin filaments repolymerized after a buffered 8 M urea extract of the tissue was dialyzed against a low ionic strength (0.005 M) buffer. However, a greater yield of repolymerized corneal epithelial filaments was obtained if the urea-soluble fraction was dialyzed against the same buffer containing 0.17 M NaCl. Brain filaments harvested by cell fractionation did not repolymerize when similarly treated.
2. 2. Electrophoretic patterns of proteins of filament-enriched fractions from the three sources were different in sodium dodecyl sulphate (SDS) polyacrylamide gels, except for one co-migrating band.
3. 3. Peptide mapping by limited proteolysis of the eluted co-migrating proteins showed few similarities.
4. 4. Amino acid analysis of the co-migrating proteins revealed numerous differences.
5. 5. Antibodies to the co-migrating corneal epithelial filament and brain filament proteins reacted only with their own antigen and whole filament type, and antibody to total keratin filament protein cross-reacted only with keratin filaments.
  相似文献   

9.
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.  相似文献   

10.
Intermediate filaments (IFs) compose, together with actin filaments and microtubules, the cytoskeleton and they exhibit a remarkable but still enigmatic cell-type specificity. In a number of cell types, IFs seem to be instrumental in the maintenance of the mechanical integrity of cells and tissues. The function of IFs in astrocytes has so far remained elusive. We have recently reported that glial scar formation following brain or spinal cord injury is impaired in mice deficient in glial fibrillary acidic protein and vimentin. These mice lack IFs in reactive astrocytes that are normally pivotal in the wound repair process. Here we show that reactive astrocytes devoid of IFs exhibit clear morphological changes and profound defects in cell motility thereby revealing a novel function for IFs.  相似文献   

11.
A cell line designated "HMMME" was established from the pleural fluids of a malignant mesothelioma patient. This line grew well without interruption for 12 years and was subcultured over 200 times. The cells were spindle and roundish in shape and displayed a monolayer sheet in an epithelial pavement cell arrangement. They were neoplastic, had pleomorphic features, and easily formed multilayering without contact inhibition. The cell cytoplasm was strongly positive against anti-vimentin, anti-calretinin and anti-pan-keratin, but negative against anti-BerEP4. The cells proliferated rapidly, and the population doubling time was about 42 hours. Their chromosome number showed a wide distribution of aneuploidy with a mode in the diploid range; many marker chromosomes were observed. The cultured cells were easily transplanted into the subcutaneous of nude mice and produced a tumor classified as a malignant mesothelioma.  相似文献   

12.
Distinct in situ 10 nm non-chromatin fibers exist within the macronucleus of the ciliated protozoanEuplotes eurystomus. Their presence is detected after permeabilizing cells in a cytoskeleton-stabilizing buffer and then fixation with glutaraldehyde-tannic acid, followed by OsO4. The 10 nm fibers are primarily localized within condensed chromatin and within the forward zone of the replication band. Although their functional role is unclear, it is suggested that they may constitute a structural framework for organization of the very large number (ca. 108) of macronuclear minichromosomes.  相似文献   

13.
14.
Intermediate filaments in nervous tissues   总被引:59,自引:30,他引:29  
Intermediate filaments have been isolated from rabbit intradural spinal nerve roots by the axonal flotation method. This method was modified to avoid exposure of axons to low ionic strength medium. The purified filaments are morphologically 75-80 percent pure. The gel electrophoretogram shows four major bands migrating at 200,000, 145,000, 68,000, and 60,000 daltons, respectively. A similar preparation from rabbit brain shows four major polypeptides with mol wt of 200,000 145,000, 68,000, and 51,000 daltons. These results indicate that the neurofilament is composed of a triplet of polypepetides with mol wt of 200,000, 145,000, and 68,000 daltons. The 51,000-dalton band that appears in brain filament preparations as the major polypeptide seems to be of glial origin. The significance of the 60,000- dalton band in the nerve root filament preparation is unclear at this time. Antibodies raised against two of the triplet proteins isolated from calf brain localize by immunofluorescence to neurons in central and peripheral nerve. On the other hand, an antibody to the 51,000-dalton polypeptide gives only glial staining in the brain, and very weak peripheral nerve staining. Prolonged exposure of axons to low ionic strength medium solubilizes almost all of the triplet polypeptides, leaving behind only the 51,000- dalton component. This would indicate that the neurofilament is soluble at low ionic strength, whereas the glial filament is not. These results indicate that neurofilaments and glial filaments are composed of different polypeptides and have different solubility characteristics.  相似文献   

15.
Intermediate filaments in smooth muscle   总被引:1,自引:0,他引:1  
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. cytoskeleton; force development; vimentin; desmin  相似文献   

16.
Distribution of actin filaments in human malignant keratinocytes was examined by immunofluorescence staining. The primary cultures were obtained from a squamous cell carcinoma, a basal cell carcinoma, and Bowen's disease. Rhodamine-phalloidin staining revealed that actin filaments were occasionally organized to form stress fibers, many short bundles with a ripple appearance, and regular arrays of actin patches. Some of these structures appeared in untransformed keratinocytes as a result of a brief exposure to a tumor promotor, TPA. These findings suggest that regulation of actin functions is involved in neoplastic processes from the very early stages and that alteration is persistent in neoplastic cells.  相似文献   

17.
When adult chicken skeletal myofibrils are treated with a myosin-extracting solution, the Z-discs with attached actin filaments retain their linear connections with one another in the extracted myofibril. The sarcomere length increases in the extracted myofibrils from a control lenght of 2.5 micrometer up to 6 micrometer. In a sarcomere, eight to fifty 10 nm filaments can be seen in parallel array in the H-zone. The 10 nm-wide filaments do not bind heavy meromyosin and are two to four micrometers in length. These intermediate filaments are postulated to be an integral part of the sarcomere, connecting Z-bands along the length of the myofibril.  相似文献   

18.
Brain 10 nm filaments were isolated from bovine, rabbit and rat brains by a modification of an existing procedure. The overall polypeptide composition of these preparations was similar to that previously reported for brain neurofilaments. In addition to the major polypeptide component, which has mol. wt. approx. 50 000, three other polypeptides with chain mol. wts. approx. 210 000, 155 000 and 70 000, which correspond to peripheral-nerve neurofilament polypeptides, were consistently found to be present. The mol. wt.-50 000 species was found to be heterogeneous and may contain a component derived from the mol. wt. 70 000 polypeptide. The three higher-molecular-weight polypeptides did not appear to be obviously homologous or to be homologous with myosin or Myxicola neurofilament polypeptides. These same three higher-molecular-weight components were shown to be identical with the polypeptides probably responsible for the 10 nm filaments formed during the early cycles of the tubulin-purification protocol.  相似文献   

19.
Intermediate filaments: vimentin moves in   总被引:5,自引:0,他引:5  
Clarke EJ  Allan V 《Current biology : CB》2002,12(17):R596-R598
Vimentin intermediate filaments move bi-directionally along microtubules in the cell. Recent work has identified the microtubule motor cytoplasmic dynein as the missing inward-directed motor that drives this movement.  相似文献   

20.
We report here the first observation of 10 nm filaments in a protozoan, Amoeba proteus. These intermediate sized filaments were observed in spread cytoplasmic preparations of amoeba as stable cytoplasmic components over a wide range of pH (5.0-9.0). Although their morphology is grossly similar to the vertebrate intermediate filaments by negative staining, the filaments of amoeba show a characteristic helical structure with a 25 nm axial periodicity and do not display fibrillar projection along their length or at their extremity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号