首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification and isolation of spermatogonial stem cells (SSCs) are a prerequisite for culture, genetic manipulation, and/or transplantation research. In this study, we established that expression of PGP 9.5 is a spermatogonia-specific marker in porcine testes. The expression pattern of PGP 9.5 in spermatogonia was compared to cell type-specific protein (GATA-4 or PLZF) expression in seminiferous tubules at different ages, and expression levels of PGP 9.5, Vasa, and Oct-4 were compared in different cell fractions. Enrichment of spermatogonia from 2-week-old (2wo) and 10-week-old (10wo) boars by adhesion to laminin, differential plating, or velocity sedimentation followed by differential plating was assessed by identification of spermatogonia using expression of PGP 9.5 as a marker. Compared to the initial samples, spermatogonia were enriched twofold in laminin-selected cells (P < 0.05), and fivefold either in cells remaining in suspension (fraction I) or in cells slightly attached to the culture dish (fraction II) (P < 0.05) after differential plating. Cells in fraction II appeared to be superior for future experiments due to higher viability (>90%) than in fraction I ( approximately 50%). Velocity sedimentation plus differential plating achieved cell populations containing up to 70% spermatogonia with good viability (>80%). Enriched spermatogonia from 2wo and 10wo testes could be maintained in a simple culture medium without additional growth factors for at least 2 weeks and continued to express PGP 9.5. These data provide the basis for future studies aimed at refining conditions of germ cell culture and manipulation prior to germ cell transplantation in pigs.  相似文献   

2.
An inhibitory, coated-well immunoassay for the neurone-specific protein PGP 9.5 has been devised and used to measure the concentrations of the protein in human tissues. Concentrations of PGP 9.5 between 40 ng/ml and 10 micrograms/ml could be measured using this assay. In brain PGP 9.5 was present at 100.58 +/- 16.18 micrograms/mg protein. Of the other organs examined only kidney and testis showed significant concentrations of PGP 9.5 (3.97 +/- 0.87 microgram/mg protein and 3.25 +/- 0.36 microgram/mg protein, respectively). All other organs contained less than 2% of the brain level. The tissue levels determined by coated-well immunoassay confirmed the tissue specificity of PGP 9.5 originally determined by high-resolution two-dimensional gel electrophoresis.  相似文献   

3.
Summary Sections of human skin were processed according to the indirect immunofluorescence technique with a rabbit antiserum against human protein gene product 9.5 (PGP 9.5). Immunoreactivity was detected in intraepidermal and dermal nerve fibres and cells. The intraepidermal nerves were varicose or smooth with different diameters, running as single processes or branched, straight or bent, projecting in various directions and terminating in the stratum basale, spinosum or granulosum. The density of the intraepidermal nerves varied between the different skin areas investigated. PGP 9.5-containing axons of the lower dermis were found in large bundles. They separated into smaller axon bundles within the upper dermis, entering this portion of the skin perpendicular to the surface. Then they branched into fibres mainly arranged parallel to the epidermal-dermal junctional zone. However, the fibres en route to the epidermis traversed the upper dermis more or less perpendicularly. Furthermore, immunoreactive dermal nerve fibres were found in the Meissner corpuscles, the arrector pili muscles, hair follicles, around the eccrine and apocrine sweat glands and around certain blood vessels. Such fibres were also observed around most subcutaneous blood vessels, sometimes heavily innervating these structures. Numerous weakly-to-strongly PGP 9.5-immunoreactive cells were found both in the epidermis and in the dermis.  相似文献   

4.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

5.
Protein gene product 9.5 (PGP9.5), originally isolated as a neuron-specific protein, belongs to a family of ubiquitin carboxyl-terminal hydrolases that play important roles in the nonlysosomal proteolytic pathway. Antibodies against PGP9.5 have been used for immunohistochemical detection of neural elements, although some non-neuronal cells are also immunoreactive for PGP9.5. In the present study, developing testes of the mouse were immunostained after autoclave pretreatment of sections. In the testes of days 8 and 16, PGP9.5 was only localized on the spermatogonia, whereas on day 30 and in adults it appeared not only on spermatogonia, but also on Sertoli cells. In the testis of the male sterile W/W(v) mutant, very little, but strong, immunoreactivity was detected at some Sertoli cells, which were phagocytizing Sertoli cell aggregations that had fallen from the basal membrane. Additionally, it was confirmed that the nucleotide sequence of PGP9.5 in mice was highly conserved, like that in other mammals. These results suggest that PGP9.5 is a useful marker for activated Sertoli cells, playing an important role in degradation of abnormal proteins.  相似文献   

6.
7.
Summary The guinea pig uterus is supplied by different populations of nerves which can be demonstrated by specific immunocytochemical and histochemical techniques. So far, there has been no single marker displaying entire peripheral innervation patterns. Recently, protein gene product (PGP) 9.5, a cytoplasmic protein in neurons and neuroendocrine cells, was found to visualize both different populations and subtypes of nerves. This prompted the present study of using PGP 9.5 for visualization of the whole uterine innervation. This was performed by the indirect immunofluorescence method using antiserum to PGP 9.5 raised in rabbits.PGP-immunoreactivity was present in all neuronal parts of the extrinsic and intrinsic uterine innervation, including different subpopulations of nerves. This was verified by chemical sympathectomy and sensory denervation with 6-hydroxydopamine and capsaicin-treatment respectively, and double immunostaining.By term a disappearance of uterine PGP-nerve-immunoreactivity was observed which was almost complete in fetus-bearing uterine tissue and further strengthens previous assumptions of a general, pregnancy-induced uterine neuronal degeneration.The developmental time-course and morphology of PGP-immunoreactive nerve structures was similar to that for other neuronal markers and support the suggestion of PGP-immunoreactivity as a general marker for the entire uterine innervation, and suggests that the presence of PGP 9.5-immunoreactivity may coincide with functional maturation of uterine innervation.  相似文献   

8.
Protein gene product (PGP) 9.5 is a new brain-specific protein originally detected by high-resolution two-dimensional electrophoresis of the soluble proteins of human brain and other organs. We have purified this protein from human brain and raised a rabbit antihuman PGP 9.5 antiserum. The protein has a monomer molecular weight of approximately 27,000 and is present in brain at concentrations at least 50 times greater than in other organs. Immunoperoxidase labelling has localised PGP 9.5 to neurones in the human cerebral cortex with no evidence of staining of glial elements. PGP 9.5 is estimated to be present in brain at concentrations of 200-500 micrograms/g wet weight and represents a major protein component of neuronal cytoplasm. This new neurone-specific cytoplasmic marker may prove useful in studies of neuronal development and in the detection of neuronal damage in disease of the nervous system.  相似文献   

9.
Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

10.
Summary Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

11.
The co-ordinate sequencing of the human neuronal and neuroendocrine marker protein PGP 9.5 and its cDNA is described. The cDNA encodes the complete protein (212 amino acids), and the 340 nucleotide 3'-noncoding region including the polyadenylation signal, indicating an mRNA slightly larger than 1 kb in size. Protein sequencing of 50% of PGP 9.5 confirms the deduced protein sequence.  相似文献   

12.
Summary The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

13.
The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

14.
Neuronal protein gene product 9.5 (PGP 9.5) most likely identical to ubiquitin carboxyl-terminal hydrolase isozyme LI (UCH-LI) has been reported to be expressed almost exclusively in neuronal and neuroendocrine tissues. By two-dimensional (2D) immunoblotting, comigration and microsequencing of proteins recovered from 2D gels we have identified PGP 9.5/UCH-LI as polypeptide IEF SSP 6104 (Mr = 27000, PL = 5.49) in the comprehensive 2D gel cellular protein database of human embryonal lung MRC-5 fibroblasts [(1989) Electrophoresis 10, 76–115; (1990) Electrophoresis 11, 1072–1113]. This protein is expressed at high levels in quiescent and proliferating cultured normal fibroblasts and is strongly down-regulated (about 10 times) in their transformed counterparts.  相似文献   

15.
16.
This study examines the occurrence and distribution of epidermal dendritic cells (DCs) in cryostate sections from plantar skin in normal rats and in rats with a crush injury or neurotomy and suture of the sciatic nerve. The dendritic cells were visualized with antibodies against protein-gene product 9.5 (PGP 9.5). Counts under the fluorescence microscope showed that the occurrence of dendritic cells is increased and that the proportion of dendritic cells in the basal layer is elevated 3 months after sciatic neurotomy and suture but not after a crush lesion. The countings also revealed that the number of cells is elevated as soon as 1 week after neurotomy and suture. Labelling with specific antibodies showed that the dendritic cells examined represent Langerhans cells (LCs). These observations show that there is a neural influence on the occurrence and distribution of PGP 9.5-immunoreactive epidermal Langerhans cells. Whether this influence is direct or indirect remains to be ascertained.  相似文献   

17.
We have isolated a cDNA clone encoding ubiquitin carboxyl-terminal hydrolase PGP9.5 from a rat brain cDNA library and examined the tissue distribution. The primary structure of the cDNA consists of 856 nucleotides including the entire coding region for 223 amino acids, and the calculated molecular mass is 24,782 Da. The rat PGP9.5 is strikingly homologous to the human PGP9.5, 75.2% of nucleic acids and 95.1% of amino acids being identical. The mRNA of PGP9.5 is most abundant in the rat brain and to a lesser degree in the testis. In other peripheral tissues we tested, the mRNA was undetectable. Western blotting using an anti-rat PGP9.5 antibody revealed the parallel distribution of mRNA and protein in various brain regions and testis. The availability of the rat PGP9.5 clone provides a new approach to examine the function of PGP9.5 and the role that it plays in the pathology of neurodegenerative diseases.  相似文献   

18.
Fibroblast-like (Type B) synoviocytes are cells in the synovial membrane that are responsible for production of both synovial fluid and the extracellular matrix in the synovial intima. Immunostaining of the horse synovial membrane for protein gene product (PGP) 9.5, which is a neuron-specific ubiquitin C-terminal hydrolase, demonstrated selective localization of the immunoreactivity in a synoviocyte population different from acid phosphatase-positive Type A synoviocytes. The immunoreactive cells were lined up in the synovial intima and extended dendritic processes towards the joint cavity to form a dense plexus on the surface. Electron microscopic examination clearly identified the PGP 9.5-immunoreactive cells as Type B synoviocytes characterized by developed rough endoplasmic reticulum and free ribosomes. Immunoreactivity for PGP 9.5 was diffusely distributed throughout the cytoplasm, including the tips of fine processes. Western and Northern blot analyses could not distinguish the corresponding protein and mRNA obtained from the brain and synovial membrane. The existence of the neuron-specific PGP 9.5 in Type B synoviocytes suggests a common mechanism regulating the protein metabolism between neurons and synoviocytes, and also provides a new cytochemical marker for identification of the cells.  相似文献   

19.
Protein gene product 9.5 (PGP9.5) is expressed at high level in the neural and neuroendocrine systems. We investigated the localization and degree of expression of PGP9.5 in the developing mouse placenta and embryo at 6.5, 10.5 and 14 days of gestation using an immunohistochemical technique. At 6.5 days of gestation PGP9.5 was detected at various levels in decidual and primary trophoblast giant cells in the placenta, and in embryonic ectodermal cells in the embryo. At 10.5 and 14 days of gestation PGP9.5 was expressed at moderate to strong levels in neurons in the embryo, but rarely in the placenta. These findings suggest that the protein may play a significant role in implantation and placental development, and differentiation of embryonic ectoderm.  相似文献   

20.
A quantitative immunohistochemical study was performed of the distribution of protein gene product 9.5 (PGP, a soluble protein localized in neurons and neuroendocrine cells as well as in some non-nervous cells) and ubiquitin along the rat epididymis. In the ductuli efferentes, PGP immunoreaction was observed in the whole cytoplasm of some columnar cells; a smaller number of columnar cells showed ubiquitin immunoreactivity with limited apical and basal cytoplasmic localization. In the proximal caput epididymidis, the whole cytoplasm of all columnar cells showed PGP immunoreactivity, ubiquitin immunostaining was negative in this region. In the middle and distal caput epididymidis and the distal cauda, the apical cytoplasm of some columnar cells and the whole cytoplasm of some basal cells showed immunoreactivity to PGP. In these regions, immunoreactivity to ubiquitin was positive in the supranuclear cytoplasm of some columnar cells but not in the basal cells. No immunoreactivity to PGP or ubiquitin was detected in the corpus epididymis and the proximal cauda. Double immunostaining revealed that all the epididymal ubiquitin immunoreactive cells were also PGP immunoreactive, whereas most PGP immunoreactive cells did not immunoreact to ubiquitin. In ubiquitin-PGP immunoreactive cells, the site of the PGP immunoreaction differed from that of the ubiquitin immunoreaction. PGP-ubiquitin immunoreactive cells also seemed to be immunoreactive to anti-AE1/AE3 keratin antibodies. The spermatozoal heads were immunoreactive to PGP antibodies in the epididymal regions from proximal caput to distal cauda but not in the ductuli efferentes. The findings suggest that non-ubiquitinated PGP immunoreactive proteins are secreted in the epididymis, mainly in the proximal caput, and attach to spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号