首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The primary and three-dimensional structures of a [NiFe] hydrogenase isolated from D. desulfitricans ATCC 27774 were determined, by nucleotide analysis and single-crystal X-ray crystallography. The three-dimensional structural model was refined to R=0.167 and Rfree=0.223 using data to 1.8 A resolution. Two unique structural features are observed: the [4Fe-4S] cluster nearest the [NiFe] centre has been modified [4Fe-3S-3O] by loss of one sulfur atom and inclusion of three oxygen atoms; a three-fold disorder was observed for Cys536 which binds to the nickel atom in the [NiFe] centre. Also, the bridging sulfur atom that caps the active site was found to have partial occupancy, thus corresponding to a partly activated enzyme. These structural features may have biological relevance. In particular, the two less-populated rotamers of Cys536 may be involved in the activation process of the enzyme, as well as in the catalytic cycle. Molecular modelling studies were carried out on the interaction between this [NiFe] hydrogenase and its physiological partner, the tetrahaem cytochrome c3 from the same organism. The lowest energy docking solutions were found to correspond to an interaction between the haem IV region in tetrahaem cytochrome c3 with the distal [4Fe-4S] cluster in [NiFe] hydrogenase. This interaction should correspond to efficient electron transfer and be physiologically relevant, given the proximity of the two redox centres and the fact that electron transfer decay coupling calculations show high coupling values and a short electron transfer pathway. On the other hand, other docking solutions have been found that, despite showing low electron transfer efficiency, may give clues on possible proton transfer mechanisms between the two molecules.  相似文献   

2.
Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The "split-Soret" cytochrome (SSC) was isolated from the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 and has no significant nitrate or nitrite reductase activity. The protein received its name due its unusual spectral properties. It is a dimer containing two identical subunits of 26.3 kDa, each with two haem-c groups. A preliminary model for the three-dimensional structure of this cytochrome was derived using the Multiple Wavelength Anomalous Dispersion (MAD) phasing method. This model shows that SSC is indeed a dimer containing four haems at one end of the molecule. In each monomer the two haems have their edges overlapped within van der Waals contacts with an iron-to-iron distance of 9?Å. The polypeptide chain of each monomer supplies the sixth axial ligand to the haems of the other monomer. This work shows that SSC constitutes a new class of cytochrome. The stacking of the two haems in the monomer within van der Waals distances of each other, and also the short (van der Waals) distances between the two monomers in the dimeric molecule are unprecedented in hemoproteins. This particular haem arrangement is an excellent model for the spectral study (undertaken several years ago) of haem-haem interaction using the aggregated haem undecapeptide derived from mammalian cytochrome c.  相似文献   

3.
The structures of the hybrid cluster proteins (HCPs) from the sulfate-reducing bacteria Desulfovibrio desulfuricans (ATCC 27774) and Desulfovibrio vulgaris (Hildenborough) have been elucidated at a resolution of 1.25 A using X-ray synchrotron radiation techniques. In the case of the D. desulfuricans protein, protein isolation, purification, crystallization and X-ray data collection were carried out under strict anaerobic conditions, whereas for the D. vulgaris protein the conditions were aerobic. However, both structures are essentially the same, comprising three domains and two iron-sulfur centres. One of these centres situated near the exterior of the molecules in domain 1 is a cubane [4Fe-4S] cluster, whereas the other, located at the interface of the three domains, contains the unusual four-iron cluster initially found in the D. vulgaris protein. Details of the structures and the associated EPR spectroscopy of the D. desulfuricans protein are reported herein. These structures show that the nature of the hybrid cluster, containing both oxygen and sulfur bridges, is independent of the presence of oxygen in the isolation and crystallization procedure and also does not vary significantly with changes in the oxidation state. The structures and amino acid sequences of the HCP are compared with the recently elucidated structure of the catalytic subunit of a carbon monoxide dehydrogenase from Carboxydothermus hydrogenoformans and related dehydrogenases. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0326-y.  相似文献   

4.
Black layer is a condition of high-sand-content golf greens that results in a subsurface blackened layer in the sand produced by sulfate-reducing bacteria. Black layer can be the product of an interaction of cyanobacteria and sulfate-reducing bacteria and may or may not be toxic to the grass growing on the sand. The organic byproducts of the cyanobacteria coat and plug the sand thereby creating an anoxic environment for development of the sulfate- reducing bacteria. The present study was initiated to determine the range of gaseous hydrocarbons evolved from black layered sand produced by the interaction of two genera of cyanobacteria, Nostoc and Oscillatoria, and Desulfovibrio desulfuricans. The gaseous hydrocarbons measured included methane, ethane, ethylene, and propylene. In nonblackened sand, Nostoc evolved the highest levels of these gases, Oscillatoria evolved relatively low levels except for propylene, and D. desulfuricans evolved the smallest quantities of the gases. When the cyanobacteria and D. desulfuricans were combined to develop black layered sand some changes occurred in the evolution of the gases. Evolution of the gases from Nostoc + D. desulfuricans decreased or remained the same relative to Nostoc alone, and increased relative to D. desulfuricans alone. Except for propylene evolution, gases from Oscillatoria + D. desulfuricans increased relative to Oscillatoria or D. desulfuricans alone. Propylene evolution from Oscillatoria + D. desulfuricans remained unchanged relative to Oscillatoria alone, but increased relative to D. desulfuricans alone. The gases measured are discussed relative to the organisms observed and the conditions of the study.  相似文献   

5.
6.
7.
The three-dimensional structure of the proteic complex formed by bovine trypsinogen and the porcine pancreatic secretory trypsin inhibitor (Kazal type) has been solved by means of Patterson search techniques, using a predicted model of the trypsin-ovomucoid complex (Papamokos et al., 1982). The structure of the complex, including 162 solvent molecules, has been refined at 1.8 Å resolution (26,341 unique reflections) to a conventional crystallographic R factor of 0.195. The inhibitor molecule binds to trypsinogen via hydrogen bonds and/or apolar interactions at sites P9, P7, P6, P5, P3, P1, P1′, P2′ and P3′ of the contact area. The structure of the inhibitor itself resembles closely that of the third domain of Japanese quail ovomucoid inhibitor, recently reported by Weber et al. (1981). The trypsinogen part of the complex resembles trypsin, as is the case in the trypsinogen-basic pancreatic trypsin inhibitor complex, but two segments of the activation domain adopt a different conformation. Most notably in the N-terminal region the Ile16-Gly19 loop, which is disordered in free trypsinogen and in the trypsinogen-basic pancreatic trypsin inhibitor complex (Huber & Bode, 1978), assumes a regular structure and the polypeptide chain can be traced as far as residue Asp14. This new and fixed structure allows the formation of a buried salt link between the side-chains of Lys156 and Asp194. Conformations differing from those of trypsin are also found for residues 20 to 28 and residues 141 to 155. Some structural perturbation is observed in other parts of the molecule, including the calcium loop.  相似文献   

8.
9.
A triad of tyrosine residues (Y152–154) in the cytochrome c1 subunit (C1) of the Rhodobacter capsulatus cytochrome bc1 complex (BC1) is ideally positioned to interact with cytochrome c2 (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations—A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117 mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation.  相似文献   

10.
Design of inhibitors of glycogen phosphorylase (GP) with pharmaceutical applications in improving glycaemic control in type 2 diabetes is a promising therapeutic strategy. The catalytic site of muscle glycogen phosphorylase b (GPb) has been probed with five deoxy-fluro-glucose derivatives. These inhibitors had fluorine instead of hydroxyl at the 3′ position of the glucose moiety and a variety of pyrimidine derivatives at the 1′ position. The best of this carbohydrate-based family of five inhibitors displays a Ki value of 46 μM. To elucidate the mechanism of inhibition for these compounds, the crystal structures of GPb in complex with each ligand were determined and refined to high resolution. The structures demonstrated that the inhibitors bind preferentially at the catalytic site and promote the less active T state conformation of the enzyme by making several favorable contacts with residues of the 280s loop. Fluorine is engaged in hydrogen bond interactions but does not improve glucose potency. The pyrimidine groups are located between residues 284–286 of the 280s loop, Ala383 of the 380s loop, and His341 of the β-pocket. These interactions appear important in stabilizing the inactive quaternary T state of the enzyme. As a follow up to recent computations performed on β-d-glucose pyrimidine derivatives, tautomeric forms of ligands 15 were considered as potential binding states. Using Glide-XP docking and QM/MM calculations, the ligands 2 and 5 are predicted to bind in different tautomeric states in their respective GPb complexes. Also, using α-d-glucose as a benchmark model, a series of substitutions for glucose –OH at the 3′ (equatorial) position were investigated for their potential to improve the binding affinity of glucose-based GPb catalytic site inhibitors. Glide-XP and quantum mechanics polarized ligand (QPLD-SP/XP) docking calculations revealed favorable binding at this position to be dominated by hydrogen bond contributions; none of the substitutions (including fluorine) out-performed the native –OH substituent which can act both as hydrogen bond donor and acceptor. The structural analyses of these compounds can be exploited towards the development of better inhibitors.  相似文献   

11.
The conformation of the α3 helix of Cro protein (residues 27–36) of bacteriophageλ is optimised by the damped least square minimization technique, with the steric constraint that Cα atom positions should match the crystallographic data available to date. On the basis of minimization of total interaction and conformation energy, models for complexes of this peptide sequence with heptanucleotide duplexes from native and altered OR3 operator are obtained in the major groove of B DNA. Analysis of the energetics for 3 sequences of the DNA show that binding strength is derived mainly from the interaction of side chains of the peptide with DNA. Sequence specificity (maximum difference in binding energy for different DNA sequences) is due to hydrogen bonding interaction. A small amount of sequence specificity is derived from non-bonded interaction also. Stereochemical aspects of peptide DNA interaction and their role in DNA recognition are discussed in this paper.  相似文献   

12.
Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E(5), (12)LAE(14), and (82)YREKIE(87). Under a wide range of expression conditions in Escherichia coli, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ.  相似文献   

13.
A (13)--D-glucan 3-glucanonydrolase (EC 3.2.1.39) of apparent M r 32 000, designated GII, has been purified from germinated barley grain and characterized. The isoenzyme is resolved from a previously purified isoenzyme (GI) on the basis of differences in their isoelectric points; (13)--glucanases GI and GII have pI values of 8.6 and 10.0, respectively. Comparison of the sequences of their 40 NH2-terminal amino acids reveals 68% positional identity. A 1265 nucleotide pair cDNA encoding (13)--glucanase isoenzyme GII has been isolated from a library prepared with mRNA of 2-day germinated barley scutella. Nucleotide sequence analysis of the cDNA has enabled the complete primary structure of the 306 amino acid (13)--glucanase to be deduced, together with that of a putative NH2-terminal signal peptide of 28 amino acid residues. The (13)--glucanase cDNA is characterized by a high (G+C) content, which reflects a strong bias for the use of G or C in the wobble base position of codons. The amino acid sequence of the (13)--glucanase shows highly conserved internal domains and 52% overall positional identity with barley (13, 14)--glucanase isoenzyme EII, an enzyme of related but quite distinct substrate specificity. Thus, the (13)--glucanases, which may provide a degree of protection against microbial invasion of germinated barley grain through their ability to degrade fungal cell wall polysaccharides, appear to share a common evolutionary origin with the (13, 14)--glucanases, which function to depolymerize endosperm cell walls in the germinated grain.  相似文献   

14.
The β-class carbonic anhydrases (β-CAs) are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion — a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO2-HCO3 - interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules.  相似文献   

15.
GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely β-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.  相似文献   

16.
17.
Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 61-residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop II, and the cation groups of all three arginines face out of the molecular surface of NT1. This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3.  相似文献   

18.
19.
A protein consisting of 60 kDa subunits (As-P60) was isolated from etiolated oat seedlings (Avena sativa L.) and characterized as avenacosidase, a -glucosidase that belongs to a preformed defence system of oat against fungal infection. The enzyme is highly aggregated; it consists of 300–350 kDa aggregates and multimers thereof. Dissociation by freezing/thawing leads to complete loss of enzyme activity. The specificity of the enzyme was investigated with para-nitrophenyl derivatives which serve as substrates, in decreasing order -fucoside, -glucoside, -galactoside, -xyloside. The corresponding orthonitrophenyl glycosides are less well accepted. No hydrolysis was found with -glycosides and -thioglucoside. An anti-As-P60 antiserum was prepared and used for isolation of a cDNA clone coding for As-P60. A presequence of 55 amino acid residues was deduced from comparison of the cDNA sequence with the N-terminal sequence determined by Edman degradation of the mature protein. The presequence has the characteristics of a stroma-directing signal peptide; localization of As-P60 in plastids of oat seedlings was confirmed by western blotting. The amino acid sequence revealed significant homology (>39% sequence identity) to -glucosidases that are constituents of a defence mechanism in dicotyledonous plants. 34% sequence identity was even found with mammalian and bacterial -glucosidases of the BGA family. Avenacosidase extends the occurrence of this family of -glucosidases to monocotyledonous plants.  相似文献   

20.
《Plant science》1988,57(2):141-150
A low stringency screening of a wheat (Triticum aestivum L.) genomic library produced three types of γ gliadin clones. The sequence of one clone, λ10–20, encoded a γ gliadin of 34.3 kDa. Comparisons of this protein with the proteins encoded by other γ gliadin DNA sequences revealed a general γ gliadin structure: a 19-residue signal peptide; 12-residue mature amino terminus; 12–16 copies of a proline- and glutamine-rich heptapeptide repeat; a 76-residue region high in glutamine containing most of the cyysteines and charged residues: a 6–16-residue polyglutamine region; and the 41-residue carboxyl terminus. Comparisons of the 5′ and 3′ flanking regions of several γ gliadins reveals the high homology and general structure of γ gliadin genes. A further comparison of the 5′ flanking regions with the 5′ flanking regions of other prolamin genes showed that γ gliadin genes contain three copies of a conserved sequence seen within approx. 600 b.p. upstream of the translation start sites of prolamin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号