首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO inf4 sup3− , Fe -EDTA, SiO inf3 sup2− and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.  相似文献   

2.
Tibbs Run Lake was sampled from December 1979 to December 1980, monthly during the winter and biweekly during the spring, summer, and autumn. Primary production was measured from March 1980 to February 1981, either monthly or biweekly, as indicated above. The mean annual hydrogen ion concentration was equivalent to pH 4.33. This pH was 46% lower (based on H+ concentrations) than the 1977–1978 mean. The low pH of the lake is due to inputs of acid precipitation and the low buffering capacity of the watershed. Predictions of further reductions in the lake pH, based on mean annual hydrogen ion concentrations and hydrogen ion retention coefficients (RH) from Shellito (1979) and this study, indicate that the lake pH should reach an equilibrium with the precipitation pH between 1982 and 1985, assuming the precipitation pH continues to average 4.10. The stratified period mean chlorophyll a and total phosphorus concentrations were 22.1 mg/m3 and 19.3 μg/1, respectively. Total phosphorus loading to the lake was 0.233 gP/m2/yr. To examine the effects of neutralization and fertilization with phosphorus an in situ bag enclosure experiment, lasting 16 days, was performed during the summer of 1980. In the bags, phosphorus (20 μg/1 on days 0,4,8,12 as KH2PO4) was added alone and in combination with a base addition (IN KOH). The base additions raised the pH to approximately 7.8. Other treatments included base addition alone and a control. The maximum chlorophyll a concentration was found in the phosphorus treatment (∼30 mg/m3) on day 6. The phosphorus plus base treatment exhibited a 10 day lag before reaching a maximum chlorophyll a concentration (∼27 mg/m3) on day 16. The highest production rate was found in the phosphorus plus base treatment on day 12 (∼27 mgC/m3/hr.). A similar bag experiment, lasting 46 days, was performed during the late summer and early autumn of 1980. The treatments were the same as in the first experiment, however, the nitrate-nitrogen depletion in the lake and treatments necessitated the addition of nitrogen (2 mg/1 as NaNO3) to one of each replicate treatment on day 5. On day 34, the maximum chlorophyll a concentrations were found in the phosphorus plus base nitrogen treatment (∼120 mg/m3) and the phosphorus plus nitrogen treatment (∼38.8 mg/m3). The control plus nitrogen treatment was submerged and possibly contaminated on day 5. All treatments not receiving nitrogen, except for the phosphorus plus base treatment, decreased in the chlorophyll a concentration throughout the experiment. The phosphorus plus base treatment peaked in the chlorophyll a concentration on day 45 (∼28 mg/m3) despite non-detectable levels of nitrate-nitrogen. The maximum primary production rate was found in the phosphorus plus base plus nitrogen treatment (∼32 mgC/m3/hr.) on day 11.  相似文献   

3.
Kallio  Kari 《Hydrobiologia》1994,(1):371-378
The effect of weather on the eutrophication of a shallow lake was estimated by a hydrodynamic lake model coupled with a simple water quality module. The model was applied to Lake Villikkalanjärvi in southern Finland. This shallow, agriculturally loaded lake may stratify during warm and calm periods in summer and as a result oxygen is often consumed from the hypolimnion, causing high internal loading of phosphorus. Vertical mixing and temperature distribution in the lake were simulated by a one-dimensional, horizontally integrated hydrodynamic model. State variables included in the water quality model were dissolved reactive phosphorus, chlorophyll a and dissolved oxygen. The model was first calibrated against observations from 1989 and 1990. Thereafter, simulations were carried out using weather data from the years 1961 to 1988. The results indicated that warm summer periods may cause high chlorophyll a concentrations due to high internal loading. In four years with exceptionally warm summers the model predicted maximum chlorophyll a concentrations almost twice as high as in years without remarkable internal loading. The model simulates accurately temperature and mixing but the reliability of water quality predictions could be improved by adding more factors regulating algal biomass and sediment phosphorus release.  相似文献   

4.
In order to predict the distribution of chlorophyll a synoptically in Lake Taihu from 2006 to 2008, a common empirical algorithm was developed to relate time series chlorophyll a concentrations in the lake to reflectance derived as a function of band 2 MODIS data (r 2 = 0.907, n = 145) using time series from 2005. The empirical model was further validated with chlorophyll a data from a 2008 to 2009 dataset, with RMSE < 7.48 μg l−1 and r 2 = 0.978. The seasonal and inter-annual variability of the surface chlorophyll a concentration from 2006 to 2008 was then examined using Empirical Orthogonal Function (EOF) analysis. The results revealed that the first four modes were significant, explaining 54.0% of the total chlorophyll a variance, and indicated that during the summer, algal blooms always occur in the northern bays, Meiliang Bay and Gonghu Bay, while they occur along the southwestern lakeshore during early summer, fall, and even early winter. The inter-annual variance analysis showed that the duration of algal blooms was from April to December of 2007, which was different from the bloom periods in 2006 and 2008. The results of EOF analysis show its potential for long-term integrated lake monitoring, not only in Lake Taihu but also in other large lakes threatened by accelerating eutrophication.  相似文献   

5.
In lakes, spatial and temporal variability of water chemistry and phytoplankton are characteristic phenomena although often difficult to link together. This motivated us to study their interplay in Lake Vanajanselkä, a eutrophic lake in Finland. We hypothesized that in summer spatial and temporal differences in phytoplankton and water chemistry can be extended in comparison to spring and autumn. Therefore, chlorophyll a and water chemistry was examined by six sampling campaigns with 15 sampling sites over the lake in May–October 2009–2010. In summer, chlorophyll, pH, and oxygen were horizontally and vertically unevenly distributed in the lake, and in the epilimnion pH and oxygen showed a distinct diurnal variability suggesting high photosynthesis during the day. Daily >1 pH unit difference between the sites and 2.5 pH unit difference between the epi- and hypolimnion were found. In agreement with pH and oxygen, NO3-N and NH4-N could be unevenly distributed in the epilimnion. In autumn no spatial differences were found, however. The results emphasized that algae and cyanobacteria were responsible, at least partly, for the variability in water chemistry in the surface layer, and short- and long-term gradients in space and time need to be considered when productive lakes are studied.  相似文献   

6.
The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978–79. Total nitrogen:total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the epilimnion. Approximately 90% of annual TP loading reached the lake via streamflow, and 93% of this entered during snowmelt and spring-overturn periods. At that time incoming water flushed the lake 2.4 times. Atmospheric loading accounted for 1.4% of annual TP load. Internal hypolimnetic TP loading occurred during summer stratification. Mean [chl a] for the ice-free period was 15.15 mg m–3, within the range expected for eutrophic lakes.The 1978–79 data were used in conjuction with the Vollenweider & Kerekes (1980) model to produce a model specific for the Skinner Lake system. The model predicted mean epilimnetic total phosphorus and chlorophyll a concentrations from mean total phosphorus concentration in inlet streams and from lake water residence time during the period of spring overturn and summer stratification. The Skinner-specific model was tested in 1982 and it closely predicted observed mean epilimnetic [TP] and [chl a] during the ice-free period. This study shows that variability in lake models which average data over an annual period can be reduced by considering lake-specific seasonal variation in hydrology and external TP loading.  相似文献   

7.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

8.
A bioassay was developed, involving steady-state ATP level determinations, for estimation of phosphate demand and deficiency in natural phytoplankton communities. The studies were performed on phytoplankton from the moderately acidified Lake Njupfatet in central Sweden before and after liming. Phytoplankton samples from in situ enclosure experiments with low-dose enrichments of nitrate and phosphate and removal of large (> 100 µm) zooplankton and from the lake water were collected. The phytoplankton were concentrated by through-flow centrifugation and post-cultured in the laboratory with or without the addition of phosphate. A relative increase in the ATP:chlorophyll a ratio after the phosphate treatment as compared to samples without phosphate enrichment was found to be a highly reproducible indicator of phosphate deficiency in the natural phytoplankton population. In contrast, the absolute ATP:chlorophyll a ratio varied substantially between different sampling occasions. No phosphate deficiency was detected in phytoplankton from the acidic lake or from fertilized in situ enclosures. However, phytoplankton from in situ enclosures without added nutrients showed evidence of phosphate limitation after 21 days incubation. Also, the phytoplankton community developed a significant phosphate deficiency the summer after lake liming. The results from the ATP analyses are compared with chemical data of the lake water, phytoplankton community structure and phosphatase activities in the lake before and after liming. The average total biomass of phytoplankton and the average Tot-P measured during May to September decreased with appr. 30% after liming while Tot-N was essentially unaffected and the phosphatase activities increased by 1000–2000%.  相似文献   

9.
Enda P. Mooney 《Hydrobiologia》1989,175(3):195-212
During 1980/1981, a twelve month study was carried out on the phytoplankton of Lough Corrib, a large freshwater lake in western Ireland. Cell counts indicated low phytoplankton productivity and this was reflected in low chlorophyll a values and high Secchi readings. Diatoms predominated in spring and were succeeded by blue-green algae in late summer. The spring diatom crop was apparently limited by either silicate or nitrogen. Mineral uptake by rooting macrophytes and benthic algae and phosphate recycling as a result of bottom sediment disturbance may be important elements in the nutrient cycling regime of the lake. Differences in morphology between the upper and lower basins of the lake are reflected, to some extent, in species composition and areal productivity.  相似文献   

10.
Vertical distributions of zooplankton were studied in relation to profiles of temperature, oxygen and chlorophyll a in Roi Lake, a small meromictic lake in central Alberta. Zooplankton were distributed fairly evenly through the oxygenated part of the water column in early summer, but a gradual descent of several species became evident in June. The vertical distribution of chlorophyll was dominated by a huge peak at the 8- to 9-m-deep chemocline. the location of a plate of photosynthetic sulfur bacteria. Ambient concentration of chlorophyll was a poor predictor of the numbers of zooplankton and the fecundity of Daphnia pulicaria at different depths, and per capita birth rates of Daphnia were usually highest in the surface waters. The reproductively disadvantageous restriction of daphnids to deep water by late summer and their catastrophic decline in the face of high ambient concentrations of chlorophyll suggest that factors other than temperature and food supply are important in influencing the dynamics and distribution of zooplankton in this lake.  相似文献   

11.
Key features of photosynthetic picoplankton populations were compared during 1988 in ten lakes in northern England ranging from oligotrophic to slightly eutrophic; two of the three eutrophic lakes were shallow and lacked a thermocline. Measurements were made at 0.5 m depth of temperature, total chlorophyll a, chlorophyll-containing picoplankton cell density, mean picoplankton cell volume and percentage of phycoerythrin-rich cells in the total picoplankton population. All lakes showed maxima for total chlorophyll concentration and picoplankton cell density in mid- to late summer. The maximum value for picoplankton density ranged from 3.4 × 103 (Esthwaite Water) to 1.3 × 106 cells ml−1 (Ennerdale Water). There was a significant negative relationship (p < 0.05) between log10 of maximum picoplankton cell density and maximum total chlorophyll, the latter being taken as an indicator of lake trophic status. The ratio of maximum to minimum picoplankton density during the year in a particular lake ranged from 39 to 2360 and showed no obvious relationship to lake type. Overall, the seasonal range in picoplankton density was about one order of magnitude greater than the range in total chlorophyll a, but there were considerable differences between lakes. Phycoerythrin-rich picoplankton as a percentage of total picoplankton reached a maximum in summer in all lakes. Values were always very low (<5%) in the two shallow eutrophic lakes, but reached 97% and over in the four most oligotrophic lakes. In two of the oligotrophic lakes, Wast-water and Ennerdale Water, phycoerythrin-rich picoplankton was a major component of the summer phytoplankton biomass.  相似文献   

12.
Crisman  Thomas L.  Chapman  Lauren J.  Chapman  Colin A. 《Hydrobiologia》1998,368(1-3):149-155
This study examines the relationship of profundal oxygen concentrations in 55 shallow Florida lakes to humic color, trophic state, and lake size during different seasons. The data set represented a broad range of color and trophic state. The percent saturation of dissolved oxygen remained relatively constant during the fall (mean 78.4%), winter (mean 81.3%), and spring (mean 82.5%), but declined markedly during summer (mean 65.2%). Chlorophyll a concentrations were highest during the winter (mean 2.52 mg m–3) and lowest during the fall (mean 1.17 mg m–3), while color peaked during the fall (mean 30.1 mg Pt l–1) and was lowest during the summer (mean 12.7 mg Pt l–1). The relative importance of lake size, chlorophyll a, and color in explaining variation in percent oxygen saturation was examined using multiple regression. Percent oxygen saturation was negatively correlated with color during the winter, spring, and summer, and positively correlated with lake size in the winter and spring. However, percent oxygen saturation showed no relationship with chlorophyll a during any season. These results suggest that colored Florida lakes are naturally oxygen depleted and that profundal oxygen values have little relationship to lake trophic state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
This work constitutes the first floristic and ecological analysis of the phytoplankton community of a volcanic freshwater lake in Deception Island (62°57′S, 60°38′W, South Shetland Islands, Antarctica). The main limnological features and phytoplankton size fractions were analyzed. Samples were taken during the austral summer of 2002 at two opposite sites. According to ANOVA results performed with abiotic variables, no significant differences between sites were found. The phytoplankton community showed low algal species richness, with an important contribution of the tychoplanktonic taxa. In terms of species number, Bacillariophyceae was the dominant class. Autotrophic picoplankton registered the highest densities from the second sampling date onwards. Nanophytoplankton was represented by unidentified chrysophycean organisms, which showed different distribution patterns between sites. The net phytoplankton abundance remained low during the sampling period and was strongly correlated with chlorophyll a concentration. Both nutrient concentrations and chlorophyll a values indicated oligotrophic conditions.  相似文献   

14.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

15.
We used data collected from 1989 to 2009 from 151 shallow (mean depth < 3 m) temperate lakes in Denmark to explore the influence of lake trophic status, surface area and catchment size on the seasonal dynamics of the air–water flux of CO2. Monthly CO2 fluxes were derived from measurements of acid neutralizing capacity (ANC), pH, ionic strength, temperature, and wind speed. CO2 fluxes exhibited large seasonal variability, in particular in oligo-mesotrophic lakes. Most of the lakes emitted CO2 during winter (median rates ranging 300–1,900 mg C m−2 day−1), and less CO2 during summer or, in the case of some of the highly eutrophic lakes, retained CO2 during summer. We found that seasonal CO2 fluxes were strongly negatively correlated with pH (r = −0.65, P < 0.01), which in turn was correlated with chlorophyll a concentrations (r = 0.48, P < 0.01). Our analysis suggests that lake trophic status (a proxy for pelagic production) interacts with the lake ANC to drive the seasonal dynamics of CO2 fluxes, largely by changing pH and thereby the equilibrium of the free CO2 and bicarbonate relation. Long-term observations from four lakes, which have all undergone a period of oligotrophication during the past two decades, provide further evidence that CO2 efflux generally increases as trophic status decreases, as a consequence of decreased pH. Across these four lakes, the annual average CO2 emission has increased by 32% during the past two decades, thus, demonstrating the strong link between lake trophic status and CO2 flux.  相似文献   

16.
1. Lough Neagh is a large eutrophic lake covering 387 km2 with a mean depth of 8.9 m. It is an important natural resource, being the largest single source of potable water for Belfast, Northern Ireland. 2. This report examines the causes of the year-to-year variation in the April–June (spring) algal biomass, measured as chlorophyll a, for the period 1974–92. 3. The spring chlorophyll a declined following the introduction of a phosphorus (P) reduction programme at major sewage treatment works in 1981. However, since 1990 the chlorophyll a concentrations in the spring have increased. 4. Time series methodology was employed to develop a model which explained 76% of the annual variation in spring chlorophyll a concentrations. 5. The independent variables used in the multiple regression model were the previous year’s spring chlorophyll a concentration, soluble reactive P inputs for April–June and the particulate P concentration in the Lough during the previous summer.  相似文献   

17.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

18.
Chlorophyll a (Chl a) seasonality was investigated in four shallow eutrophic lakes located in north-central British Columbia (western Canada). Chlorophyll a concentration maxima in all four lakes occurred during the late summer/early autumn when near-surface total phosphorus ([Tot-P]) and total dissolved P concentrations, pH, and water temperature were highest. Mass balance and inferential analyses showed that bloom-triggering P loads came mostly from within-lake sources, but that mechanisms controlling internal loading in Charlie and Tabor (lakes having hypolimnetic oxygen deficits during summer) were fundamentally different than those in Nulki and Tachick (isothermal, well oxygenated lakes). Although the timing and intensity of major blooms were associated with late summer/early autumn P loads, average summer [Chl a] were predicted well by previously developed models based solely on spring overturn [Tot-P]. Instantaneous within-lake [Chl a] were best predicted by models incorporating both surface [Tot-P] and temperature (r 2 = 0.57–0.70). Moreover, [Tot-P] and temperature combined accounted for 57% of among-lake variations in instantaneous [Chl a]: log [Chl a] = 0.038 (°C) + 0.006 ([Tot-P]) + 0.203 (P < 0.001), where [Chl a] and [Tot-P] are in μg l−1. Positive associations between instantaneous [Chl a] and temperature support climate change models that forecast changes in phytoplankton productivity even if nutrient loading rates remain constant. Handling editor: D. Hamilton  相似文献   

19.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

20.
Hehmann  Annett  Krienitz  Lothar  Koschel  Rainer 《Hydrobiologia》2001,448(1-3):83-96
Lake Große Fuchskuhle (Brandenburg, Germany) is a naturally acidic bog lake that was artificially divided into four basins by large plastic curtains for biomanipulation experiments in 1990. Different numbers of perch were added to each compartment beginning in the spring of 1993. The species composition and abundance of phytoplankton, pH, nutrient concentrations, dissolved organic carbon (DOC) and chlorophyll a content were analyzed at regular intervals during 1991 and 1998. The division of the lake resulted in divergent developments in the physical and chemical environment of the compartments. This study compared the phytoplankton assemblages of the Northeast- (NE) and Southwest- (SW) basins which differed strongly in chemistry during the investigation period. Divergent developments in phytoplankton species composition in both basins can be explained by changes in physical and chemical conditions (bottom-up effects). Increased pH values and DOC concentrations probably favoured mass developments of the dinoflagellate Gymnodinium uberrimum since 1993, while increased nutrients (dissolved inorganic carbon, total nitrogen and especially total phosphorus) as well as further changes in pH and DOC led to the dominance of the raphidophyte Gonyostomum semen in 1998. This bloom was characterized by extreme biomasses of up to 143 mg l–1 wet weight, corresponding with high chlorophyll a concentrations of up to 413 g l–1 at the same time. In contrast, no significant relationship between experimental manipulations by piscivorous fish stocking (top-down effects) and phytoplankton biomass were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号