首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human fetal kidney explants (13-17 weeks of gestation) were maintained in serum-free organ culture. The influence of epidermal growth factor (EGF) was determined after 2 and 5 days by evaluating DNA and protein synthesis as well as the activities of five brush border hydrolases. During the studied period the overall morphology was preserved and the analysed parameters remained constant. Only DNA synthesis decreased after 2 days. The addition of EGF to the medium did not change any of the cell activities, except DNA synthesis. In fact, the incorporation of [3H]thymidine was significantly stimulated by 105% in 5-day explants cultured in the presence of the growth factor. These results indicate that EGF directly influences proliferation but not maturation of brush border enzymes in fetal human kidneys in culture.  相似文献   

2.
In human fetal kidneys (15-21 weeks of gestation) maintained in serum-free organ culture, protein synthesis remained relatively constant, but DNA synthesis decreased dramatically after 2 days. The addition of transferrin alone had no influence, but insulin and epidermal growth factor (EGF) both significantly stimulated DNA and protein synthesis. When supplemented in combination, transferrin strongly potentiated the insulin effect and after 5 days of culture DNA synthesis was practically restored to values observed in control uncultured renal explants (day 0). When EGF, a potent mitogen, was added as a third factor, the stimulating effectiveness of the (insulin plus transferrin) combination was significantly reduced. However, EGF had no such inhibiting influence on protein synthesis. Differentiation of brush border membranes, as evaluated by hydrolase activities, was not importantly induced nor retarded by any of the three factors supplemented either alone or in combination. The present results indicate that the individual effects of the three factors are not additive, but suggest that they rather act synergistically through a complex mechanism of receptor cross-talk. In our laboratory, there is convincing indication that the response of fetal organs varies according to age, proliferative state of tissues as well as stage of differentiation.  相似文献   

3.
A model previously developed in our laboratory to culture human fetal kidneys in serum-free chemically defined medium was used to evaluate the direct influence of potential regulators on nephrogenesis. The aim of the present work was to verify the effects of insulin and transferrin, two hormones considered as essential in other serum-free culture systems. Explants of renal cortex from human fetuses (15-21 weeks) were cultured for 2 and 5 days in serum-free Leibovitz's L-15 medium (37 degrees C, 95% air - 5% CO2). The addition of transferrin (5 micrograms/mL) had no effect, but insulin (30, 60, and 125 mU/mL) increased DNA and protein syntheses in a dose-dependent manner. The influence of insulin (125 mU/mL) was potentiated by the addition of transferrin and the combination of the two stimulated DNA synthesis by threefold on day 2 when compared with controls and by sixfold on day 5 of culture. After 5 days, synthesis was restored to values observed at day 0. Transferrin did not modify the insulin effect on protein synthesis, since the latter was already maximally stimulated as early as day 2 of culture and at levels well above that of uncultured explants (day 0). The activities of four hydrolases considered as markers of brush border differentiation were not importantly changed by any of the hormones, supplemented alone or in combination. The results indicate that proliferation rather than differentiation is the parameter mostly influenced by these two hormones. The combination of insulin plus transferrin restores cellular functions of human fetal kidney explants cultured in serum-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. Exogenous administration of epidermal growth factor (EGF) has not modified the protein and DNA content, nor several brush border enzymes activities of duodenum, jejunum and ileum of intact and fasted adult mice. 2. Exogenous administration of EGF has not stimulated the DNA synthesis in the three regions of the small intestine of intact adult mice. 3. EGF has a stimulatory effect on DNA synthesis of fasted mice intestine 12 hr after injection. 4. In organ culture, EGF has not altered at any concentration (10, 50, 100, 200, 800 ng/ml), the same parameters in duodenal and jejunal explants taken from animals fasted 24 hr before being killed. 5. These last results suggest that the increase of DNA synthesis observed in vivo was not a direct effect of EGF administration. 6. Finally, the EGF content of serum af adult male mice was measured in fed and fasted mice and in the organ culture media.  相似文献   

5.
The influence of hydrocortisone (10(-8)--10(-5) M) and thyroxine (10 (-9)--10(-6) M) on intestinal epithelial cell differentiation and proliferation have been studied using explants of suckling mouse jejunum maintained in serum-free organ culture. Hydrocortisone induced the appearance of sucrase activity and increased trehalase, glucoamylase, lactase and alkaline phosphatase activities. Thyroxine was completely ineffective at all the concentrations used. None of these hormones affected the mitotic activity or the 3H-thymidine incorporation into DNA. These results demonstrate that hydrocortisone but not thyroxine acts directly on intestinal brush border membrane differentiation and that both hormones do not influence the proliferation of the epithelial cells during postnatal development.  相似文献   

6.
Jejunal mucosa of 6 d-old rats were cultured for 24 and 48 h in the presence of thyroxine, insulin, pentagastrin, glucagon, epidermal growth factor (EGF) or dibutyryl-A-3:5-MP cyclic with or without dexamethasone (DX). The enzymes were assayed on the purified brush borders. The various agents added alone to the basic culture medium had no effect with the exception of DX on the levels of enzyme activities. Dexamethasone alone induced sucrase, stimulated maltase, and protected other brush border enzyme activities (aminopeptidase, lactase, and alkaline phosphatase). When added to DX-supplemented medium, only the following factors modified the levels of enzymatic activities observed with DX alone. Insulin (10(-6) M) increased maltase, alkaline phosphatase, and lactase activity to a greater extent than DX at 24 h culture, the effect being maintained at 48 h on alkaline phosphatase only. At 48 h culture, both EGF (10(-8) M) and dbcAMP (10(-3) M) decreased DX-induced sucrase activity. The latter agent also depressed DX-stimulated aminopeptidase activity.  相似文献   

7.
Characteristics of specific receptors for epidermal growth factor (EGF) and its effect on cellular proliferation and synthesis of DNA and protein were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Binding studies using 125I-EGF revealed the presence of high affinity binding sites for EGF on VSMC in culture: the apparent dissociation constant was approximately 2.5 X 10(-10)M and the maximal binding capacity was approximately 67,000 sites/cell. EGF stimulated cellular proliferation and incorporation of [3H]thymidine and [3H]leucine into the cells in a dose-dependent fashion; the approximate half-maximal stimulation was induced with 1.5 X 10(-10)M. Platelet-derived growth factor (PDGF) had an additive effect with EGF on DNA synthesis by VSMC. Preincubation of VSMC with unlabeled EGF resulted in a substantial reduction in the number of receptors without changing the affinity, suggesting receptor "down-regulation" mechanism. These data indicate that rat aortic VSMCs have specific receptors for EGF, and suggest that EGF, in addition to PDGF, is also involved in the cell growth of VSMC.  相似文献   

8.
We studied the influence of hydrocortisone (HC) on hyaluronan (HA) metabolism in explants of human skin, a model retaining normal three-dimensional architecture of dermal connective tissue and dynamic growth and stratification of epidermal keratinocytes. The synthesis of hyaluronan and proteoglycans (PGs), and DNA, were determined with 3H-glucosamine and 3H-thymidine labelings, respectively. The total content and histological distribution of hyaluronan was studied utilizing a biotinylated aggrecan-link protein complex. A low concentration of HC (10?9 M) stimulated the incorporation of 3H-glucosamine into hyaluronan in epidermis by 23% and reduced the disappearance rate of hyaluronan by 25% in chase experiments, resulting in a 74% increase in total hyaluronan (per epidermal dry weight) after a 5-day culture in 10?9 M HC. On the other hand, a high concentration of HC (10?5 M) reduced both synthesis (-42%) and degradation (-46%) of epidermal hyaluronan during 24 h labeling and chase periods. The cumulative effect of a 5-day treatment was a 24% decrease of total epidermal hyaluronan. The high dose (10?5 M) also reduced keratinocyte DNA synthesis and epidermal thickness. In dermis, only the high (10?5 M) concentration of HC was effective, inhibiting the incorporation of 3H-glucosamine into hyaluronan by 28%. No significant influences on total hyaluronan content or the disappearance rate of hyaluronan in dermal tissue was found. All HC concentrations lacked significant effects on newly synthesized PGs in epidermal and dermal tissues, but reduced the labeled PGs diffusing into culture medium. A low physiological concentration of HC thus maintains active synthesis and high concentration of hyaluronan in epidermal tissue, while high pharmacological doses of HC slows hyaluronan turnover and reduces its content in epidermis, an effect correlated with enhanced terminal differentiation, reduced proliferation rate and reduced number of vital keratinocyte layers. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The proliferation and differentiation of mouse epidermal cells can be sequentially analyzed by modification of extracellular calcium. Newborn cells cultured in low calcium medium (less than 0.1 mM) proliferate as a monolayer and maintain a typical basal cell phenotype in culture but have a limited proliferative capacity and short lifespan. Elevation of the magnesium content of the culture medium from 1 to 5 mM stimulated the proliferation of newborn mouse (1-3 days old) keratinocytes. Maximal DNA synthesis rates, as determined on day 5 of culture, were up to 2-3-fold higher in the magnesium-enriched cultures. Exposure to high magnesium caused 3-4-fold increases in the DNA content of newborn keratinocyte cultures, and extended the confluent phase of epidermal cell growth to over 10 days. Other divalent cations (strontium, copper, zinc, nickel, beryllium, and barium) did not improve keratinocyte growth in culture. Keratinocytes from the tail skin of adult (3 months old) mice displayed an absolute requirement for high phosphate in the culture medium. The medium containing an optimal (10 mM) phosphate concentration prevented the cell detachment caused by the standard low (1 mM) phosphate medium, and in combination with an elevated magnesium content (10-15 mM) it markedly increased both DNA synthesis rates and DNA content of the adult cell cultures. Optimally growing, newborn or adult cultures contained less cells in the G1 phase of the cell cycle and more cells in S and G2 +M. The addition of phosphate and magnesium per se did not induce keratinocyte differentiation and did not interfere with the high calcium (1 mM)-induced differentiation.  相似文献   

10.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

11.
Protein kinase C (PKC) isoforms are altered in colon tumors and upon exposure of intestinal mucosa to nutrients. We evaluated the effects of the PKC inhibitors staurosporine and calphostin C on human Caco-2 intestinal epithelial proliferation, motility, and differentiation. Motility was quantitated by monolayer expansion and the brush border enzymes dipeptidyl dipeptidase (DPDD) and alkaline phosphatase (AP) by synthetic substrate digestion. Staurosporine (0.03-1.0 ng/ml) and calphostin C (10-12M-10-4 M) dose-dependently inhibited monolayer expansion and AP but stimulated DPDD. Proliferation was also inhibited but the effects of each inhibitor on motility, AP, and DPDD were preserved after mitomycin C proliferative blockade, suggesting that these effects were proliferation-independent. PKC inhibitors independently inhibit motility, AP and proliferation in human intestinal Caco-2 epithelial cells, but selectively stimulate the small intestinal differentiation marker DPDD. PKC may regulate small intestinal epithelial differentiation.  相似文献   

12.
The effect of hydrocortisone on the in vitro maturation of human foetal kidney was investigated. Following legal therapeutic abortions, explants of renal cortex from foetuses aged 13-18 weeks were cultured for 5 days in serum-free Leibovitz's L-15 medium at 37 degrees C in a mixture of 95% air - 5% CO2, without hormone (controls) or with hydrocortisone at concentrations of 12.5, 25, or 50 ng/mL, which are the levels representative of different gestational periods. During the studied period of culture, the overall architecture of the renal structures was preserved without any evident signs of nephrogenesis induced by hydrocortisone. DNA synthesis was measured by incorporation of [3H]thymidine and was stimulated on day 5 by 80% with the addition of hydrocortisone at 12.5 ng/mL, and by 131% with 50 ng/mL. In autoradiograms, the sites of [3H]thymidine incorporation were the same after hydrocortisone addition, but the number of labelled nuclei was higher in 5-day explants supplemented with hydrocortisone at 50 ng/mL. The activities of some brush border enzymes (leucylnaphthylamidase, maltase, and alkaline phosphatase) were not influenced by hydrocortisone when compared with controls. Trehalase activity was decreased on day 5 with 12.5 and 50 ng/mL. A concentration of 12.5 ng/mL diminished gamma-glutamyltransferase activity by 29% on day 5. The incorporation of [3H]leucine into proteins was not influenced by any concentration of the glucocorticoid hormone. This study indicates that hydrocortisone directly influences cell proliferation and certain brush border enzymic activities in human developing kidney maintained in organ culture.  相似文献   

13.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

14.
The effect of pentagastrin, secretin and cholecystokinin on biochemical parameters of mucosal growth and differentiation was studied in organ cultured rabbit jejunum and ileum. Pentagastrin at 0.05-5.0 microgram/ml did not affect DNA content of the biopsy, but led to a significant decrease of sucrase and alkaline phosphatase activity in the ileum. Secretin prompted a significant decrease of DNA and protein in the ileum at a level of 10(-7) and 10(-5) M, but had no effect in the jejunum. Of the brush border enzymes, sucrase and alkaline phosphatase were suppressed in both parts of the intestine both with respect to specific activity and total biopsy content. Cholecystokinin, like pentagastrin, did not influence DNA or protein content, but reduced sucrase, maltase and alkaline phosphatase activity. HMG-CoA reductase, the key enzyme of cholesterol synthesis, was not significantly affected by any of the three hormones tested. When brush border enzymes or DNA from desquamated cells were measured in the post-culture medium, no consistent effect of any gastrointestinal hormone was apparent. The present study demonstrates a direct "antitrophic" effect of secretin in cultured mucosa. Pentagastrin and cholecystokinin did not influence mucosal DNA content in vitro but apparently inhibited villus cell differentiation.  相似文献   

15.
Epidermal growth factor and insulin share many biological activities, including stimulation of cell proliferation, ion flux, glycolysis, fatty acid and glycogen synthesis, and activation of receptor-linked tyrosine kinase activity. In the kidney, insulin has been shown to regulate transport processes and inhibit gluconeogenesis in the proximal tubule. Since the kidney represents a major source of EGF, the present studies investigated whether proximal tubule contained EGF receptors, whether EGF receptors were localized to apical or basolateral membranes, and whether EGF receptor activation participated in the regulation of an important proximal tubule function, gluconeogenesis. Specific EGF receptors were demonstrated in the basolateral membrane of proximal tubule. Following incubation with 125I EGF, basolateral membranes demonstrated equilibrium binding at 4 degrees C and 23 degrees C. There was 78 +/- 2% specific binding (n = 13). The dissociation constant (Kd) was 1.5 x 10(-9) M and maximal binding was 44 fmol/mg protein. There was ninefold more specific binding to proximal tubule basolateral membrane than to brush border membrane. In basolateral, but not brush border membranes, EGF induced phosphorylation of the tyrosine residues of intrinsic membrane proteins, including a 170 kDa protein, corresponding to the EGF receptor. In the presence of the gluconeogenic substrates, alanine, lactate, and succinate, proximal tubule suspensions synthesized glucose. EGF inhibited glucose production in a concentration-dependent manner over a concentration range of 3 x 10(-11) to 3 x 10(-9) M. In addition, EGF inhibited angiotensin II-stimulated glucose production in the proximal tubule suspensions. EGF did not significantly increase net glucose metabolism nor decrease cellular ATP concentrations. Therefore, these studies demonstrated that rat proximal tubule contained specific receptors for EGF that were localized to the basolateral membrane and linked to tyrosine kinase activity. EGF significantly inhibited proximal tubule glucose production without significantly increasing net glucose consumption.  相似文献   

16.
The role of endogenous regucalcin in the regulation of deoxyribonuleic acid (DNA) synthesis in the nuclei of the cloned rat hepatoma cells (H4-II-E) with proliferative cells was investigated. Cells were cultured for 6-96 h in a alpha-minimum essential medium (alpha-MEM) containing fetal bovine serum (FBS; 1 or 10%). Cell number was significantly increased between 24 and 96 h after culture with 10% FBS; cell proliferation was markedly stimulated by culture with 10% FBS as compared with that of 1% FBS. In vitro DNA synthesis activity in the nuclei of cells was significantly elevated 6 h after culture with 10% FBS and its elevation was remarkable at 12 and 24 h after the culture. Nuclear DNA synthesis activity was significantly reduced in the presence of various protein kinase inhibitors (PD98059, staurosprine, or trifluoperazine) in the reaction mixture containing the nuclei of cells cultured for 12 and 24 h with FBS (1 and 10%). The addition of regucalcin (10(-7) and 10(-6)M) in the reaction mixture caused a significant inhibition of nuclear DNA synthesis activity. The presence of anti-regucalcin monoclonal antibody (25-100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS resulted in a significant increase in nuclear DNA synthesis activity. This increase was completely blocked by the addition of regucalcin (10(-6) M). The effect of anti-regucalcin antibody (100 ng/ml) in increasing nuclear DNA synthesis activity was significantly inhibited in the presence of various protein kinase inhibitors. DNA synthesis activity was significantly enhanced in the presence of anti-regucalcin antibody (100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS in the presence of Bay K 8644 (2.5 x 10(-6) M). Culture with Bay K 8644 did not cause a significant increase in DNA synthesis activity in the absence of anti-regucalcin antibody. The present study demonstrates that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis with proliferative cells.  相似文献   

17.
Anabolic hormones, mechanical loading, and the obese protein leptin play separate roles in maintaining bone mass. We have previously shown that leptin, as well as its receptor, are expressed by normal human osteoblasts. Consequently, we have investigated how leptin affects proliferation, differentiation, and apoptosis of human osteoblasts. Iliac crest osteoblasts, incubated with either leptin (100 ng/ml), calcitriol (1,25(OH)(2)D(3); 10(-9) M) or 1-84 human parathyroid hormone (PTH; 10(-8) M), were cultured for 35 consecutive days and assayed for expression of various differentiation-related marker genes (as estimated by RT-PCR), de novo collagen synthesis, proliferation, in vitro mineralization, and osteoclast signaling. The effects of leptin on protection against retinoic acid (RA; 10(-7) M) induced apoptosis, as well as transition into preosteocytes, were also tested. Leptin exposure enhanced cell proliferation and collagen synthesis over both control condition and PTH exposure. Leptin inhibited in vitro calcified nodule production after 1-2 weeks in culture, however, subsequent to 4-5 weeks, leptin significantly stimulated mineralization. The mineralization profile throughout the entire incubation period was almost undistinguishable from the one induced by PTH. In comparison, 1,25(OH)(2)D(3) generally reduced proliferation and collagen production rates, whereas mineralization was markedly enhanced. Leptin exposure (at 2 and 5 weeks) significantly enhanced the expression of TGFbeta, IGF-I, collagen-Ialpha, ALP, and osteocalcin mRNA. Leptin also protected against RA-induced apoptosis, as estimated by soluble DNA fractions and DNA laddering patterns subsequent to 10 days of culture. The expression profiles of Bax-alpha and Bcl-2 mRNAs indicated that leptin per se significantly protected against apoptosis throughout the entire incubation period. Furthermore, the osteoblast marker OSF-2 was diminished, whereas the CD44 osteocyte marker gene expression was stimulated, indicating a transition into preosteocytes. In terms of osteoclastic signaling, leptin significantly augmented the mRNA levels of both interleukin-6 (IL-6) and osteoprotegerin (OPG). In summary, continuous leptin exposure of iliac crest osteoblasts, promotes collagen synthesis, cell differentiation and in vitro mineralization, as well as cell survival and transition into preosteocytes. Leptin may also facilitate osteoblastic signaling to the osteoclast.  相似文献   

18.
The effects of factors known to influence bone metabolism were examined using the osseous cell line CFK1. Parathyroid hormone (PTH) and dexamethasone (DEX) appeared to enhance the formation of cell foci of CFK1 cells in culture whereas retinoic acid (RA) caused a marked alteration in individual cell morphology. Bone morphogenetic protein (BMP-2) and PTH increased alkaline phosphatase activity, however, this index of differentiation was suppressed by epidermal growth factor (EGF), DEX, and RA. BMP-2 and EGF each stimulated DNA synthesis in a dose-dependent manner and enhanced cell numbers, but, no synergistic response of EGF and BMP-2 was observed. PTH and DEX failed to significantly alter cell number or EGF-stimulated DNA synthesis or cell proliferation. Although RA treatment of CFK1 cells resulted in a reduction in cell number compared to control, pretreatment with RA enhanced EGF-stimulated DNA synthesis and proliferative effects. At least part of this effect was by increasing the EGF receptor binding capacity of the cells. Furthermore, using cell cycle analysis, addition of EGF stimulated the progression of RA-treated cells into the DNA synthesis (S) phase with a reduced lag time. EGF and BMP-2, therefore, appear to exert a role in the expansion dynamics of the CFK1 population although BMP-2 may also enhance differentiation. PTH and DEX may act primarily to modulate the differentiated function of the CFK1 cells. RA inhibited cell proliferation and may mediate differentiation towards a less established cell population with upregulation of EGF receptors. The CFK1 cell model may, therefore, provide insight into microenvironmental control of growth and differentiation of precursor osseous cells.  相似文献   

19.
Growth factors produced in the uterine endometrium are considered to be involved in the proliferation of the mouse uterine stromal cells induced by estradiol-17beta (E(2)) and progesterone (P). The effect of epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), one of EGF-related growth factors, on the proliferation of mouse uterine stromal cells was studied in a serum-free culture. The growth of the uterine stromal cells was measured by MTT assay. EGF was found to increase the number of uterine stromal cells in a dose-dependent manner. The DNA-replicating cells were investigated using the immunocytochemical detection of bromodeoxyuridine (BrdU)-labeled cells. EGF and TGF-alpha increased the percentage of BrdU-labeled cells in a dose-dependent manner. Administration of the combination of E(2) (10(-9) M) and P (10(-7) M) for 2 days increased the percentage of BrdU-labeled cells 2.3-fold. The stimulatory effect of EGF, TGF-alpha and the combination of E(2) and P on DNA replication in the uterine stromal cells was repressed by RG-13022 (10(-5) M, the inhibitor of the EGF receptor tyrosine kinase). RT-PCR analysis of EGF-receptor-, TGF-alpha-, and EGF-mRNA was carried out in the cultured uterine stromal cells, and revealed the expression of those mRNAs. These data supported the hypothesis that uterine endometrial stromal growth induced by sex steroids required the EGF family of ligands such as EGF and TGF-alpha, both produced in the stromal cells, acting for DNA synthesis through EGF receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号