首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proposed genetic basis of Huntington's disease   总被引:9,自引:0,他引:9  
  相似文献   

2.
Wang RR  Larson SR  Jensen KB 《Génome》2010,53(12):1083-1089
Wild Thinopyrum grasses are important gene pools for forage and cereal crops. Knowledge of their chromosome organizations is pivotal for efficient utilization of this important gene pool in germplasm enhancement programs. Expressed sequence tags derived simple sequence repeat (EST-SSR) markers for Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes were identified among amplicons produced from three series of wheat-Thinopyrum addition lines using 193 primer pairs designed from the Leymus EST unigenes. The homology of T. junceum chromosomes in 13 wheat addition lines was tentatively established to reveal that homologous groups 3, 4, 5, 6, and 7 were represented by HD3515, HD3505, AJDAj11, AJDAj1, and HD3508, whereas groups 1 and 2 were represented by AJADj7-AJDAj9 and AJDAj2-AJDAj4, respectively. AJDAj5 and AJDAj6 had complexly reconstituted T. junceum chromosomes that might have resulted from fusion or translocations of large chromosomal segments from two or more chromosomes, that is (1+5) and (2+5+1), respectively. The identified EST-SSR markers will be useful in comparative gene mapping, chromosome tracing, taxonomic studies, gene introgression, and cultivar identification.  相似文献   

3.
Dentatorubral and pallidoluysian atrophy (DRPLA), a neurological disorder thought to be rare in European populations, is caused by a triplet repeat expansion in the B37 gene on chromosome 12. This disorder can phenotypically mimic Huntington's disease (HD) which is also caused by a repeat expansion. We have analysed 139 affected individuals for the HD triplet repeat expansion and found 132 patients had one normal and one expanded allele. Two patients had an expansion on both chromosomes and five patients had two normal-size alleles. Of these five patients, two were considered to be atypical. Two patients who were father and daughter were found to have an expansion of the DRPLA triplet repeat. This therefore constitutes the second such family described in the United Kingdom.  相似文献   

4.
A novel mildly repetitive DNA sequence that is reiterated approximately 20 times in the human genome has been isolated and characterized. Most of the repeat units are localized very near the terminus of the short arm of chromosome 4 (4p) in the region known to contain the Huntington disease (HD) gene. A cloned probe that detects the repeated sequence reveals a restriction fragment length polymorphism that is close to and/or distal to the most distal genetic locus on 4p. This probe, therefore, provides a new genetic marker very close to and possibly flanking the HD gene. In addition, this probe should prove very useful for detailed physical mapping of the most distal region of 4p around the HD gene. The few (two or three) copies of this repeat not located near the terminus of 4p are located near the ends of two other chromosomes, 14 and 21.  相似文献   

5.
The Huntington disease (HD) mutation has been localized to human chromosome 4p16, in a 6-Mb region between the D4S10 locus and the 4p telomere. In a report by Robbins et al., a family was identified in which an affected individual failed to inherit three alleles within the 6-Mb region originating from the parental HD chromosome. To explain these results, it was suggested that the HD locus (HD) lies close to the telomere and that a recombination event took place between HD and the most telomeric marker examined, D4S90. As a test of this telomere hypothesis, we examined six members of this family, five of whom are affected with HD, for the segregation of 12 polymorphic markers from 4p16, including D4S169, which lies within 80 kb of the 4p telomere. We separated, in somatic cell hybrids, the chromosomes 4 from each family member, to determine the phase of marker alleles on each chromosome. We excluded nonpaternity by performing DNA fingerprint analyses on all six family members, and we found no evidence for chromosomal rearrangements when we used high-resolution karyotype analysis. We found that two affected siblings, including one of the patients originally described by Robbins et al., inherited alleles from the non-HD chromosome 4 of their affected parents, throughout the 6-Mb region. We found that a third affected sibling, also studied by Robbins et al., inherited alleles from the HD chromosome 4 of the affected parent, throughout the 6-Mb region. Finally, we found that a fourth sibling, who is likely affected with HD, has both a recombination event within the 6-Mb region and an additional recombination event in a more centromeric region of the short arm of chromosome 4. Our results argue against a telomeric location for HD and suggest that the HD mutation in this family is either associated with DNA predisposed to double recombination and/or gene conversion within the 6-Mb region or is in a gene that is outside this region and that is different from that mutated in most other families with HD.  相似文献   

6.
Genes encoding G-protein-coupled receptors, including dopamine, serotonin, muscarinic cholinergic, and adrenergic receptors, play an important role in neurotransmission and may be involved in the pathophysiology of diseases such as Alzheimer's disease, Parkinson's disease, or Huntington's disease (HD). We mapped the gene encoding the D5 dopamine receptor (DRD5) to human chromosome 4p, an area implicated in HD and the Wolf-Hirschhorn syndrome, using gene-specific amplification with the polymerase chain reaction on a panel of somatic cell hybrids carrying different human chromosomes. Further localization of the DRD5 gene was carried out through the isolation and analysis of yeast artificial chromosomes, fluorescence in situ suppression hybridization to human metaphase chromosomes, and analysis of a panel of somatic cell hybrids subdividing human chromosome 4 into nine regions. The human DRD5 gene is located at 4p15.1-p15.33, centromeric to the location of the Huntington's disease locus although not in the obligate area containing the HD gene. The localization of the DRD5 gene to 4p15.1-p15.33 suggests the possibility that cis-position effects could be responsible for the altered D1-type dopamine receptor number observed in HD tissues or that the DRD5 gene could be a candidate for some of the abnormalities associated with the Wolf-Hirschhorn syndrome.  相似文献   

7.
The configurations of immunoglobulin genes, T-cell receptor (TCR) beta chain genes and bcl-2 genes were analyzed by Southern blotting in DNAs derived from 35 fine needle aspiration biopsies from various lymphoproliferative disorders. Only 1 of 16 benign lymphoproliferative disorders showed clonality: the lymph node of a patient with Wiskott-Aldrich immunodeficiency syndrome, in which clonal rearrangement of the TCR beta chain gene was detected. Clonality was demonstrated in all 14 non-Hodgkin's lymphomas (NHLs), 2 of 3 cases of Hodgkin's disease (HD) and 2 cases diagnosed as NHL or angioimmunoblastic lymphadenopathy (AILD). None of the aspirates exhibited rearrangement of the bcl-2 gene. The studies of diagnostically difficult cases proved that molecular genetic analysis of DNA, when appropriately combined with clinical data and light microscopic analysis of the lesions, can be helpful in distinguishing between: (1) a hyperplastic lymph node and NHL or AILD; (2) NHL and well-differentiated lymphocytes; and (3) a hyperplastic lymph node and HD.  相似文献   

8.
Dispensable, supernumerary (B) chromosomes are found in diverse eukaryotic species. The origin and genetic consequences of B chromosomes have been the subjects of speculation for more than a century. Until now, there has been no molecular evidence that B chromosome DNA is transcribed and there is no unequivocal evidence as to their origin. B chromosomes are considered to be genetically inert although they appear to cause a variety of phenotypic effects. We report that members of one of two ribosomal RNA gene families that are confined to the B chromosomes of a plant, Crepis capillaris, are transcribed--thus providing the first molecular evidence of gene activity on B chromosomes. Sequence analysis of part of the A and B chromosome rRNA genes, together with comparisons with related species, indicates that the B chromosome rRNA genes originate from the A chromosome.  相似文献   

9.
Chromosome rearrangements may affect the rate and patterns of gene flow within species, through reduced fitness of structural heterozygotes or by reducing recombination rates in rearranged areas of the genome. While the effects of chromosome rearrangements on gene flow have been studied in a wide range of organisms with monocentric chromosomes, the effects of rearrangements in holocentric chromosomes—chromosomes in which centromeric activity is distributed along the length of the chromosome—have not. We collected chromosome number and molecular genetic data in Carex scoparia, an eastern North American plant species with holocentric chromosomes and highly variable karyotype (2n = 56–70). There are no deep genetic breaks within C. scoparia that would suggest cryptic species differentiation. However, genetic distance between individuals is positively correlated with chromosome number difference and geographic distance. A positive correlation is also found between chromosome number and genetic distance in the western North American C. pachystachya (2n = 74–81). These findings suggest that geographic distance and the number of karyotype rearrangements separating populations affect the rate of gene flow between those populations. This is the first study to quantify the effects of holocentric chromosome rearrangements on the partitioning of intraspecific genetic variance.  相似文献   

10.
In the present study we have analyzed 44 Y-chromosome biallelic polymorphisms in population samples from northwestern (NW) Africa and the Iberian Peninsula, which allowed us to place each chromosome unequivocally in a phylogenetic tree based on >150 polymorphisms. The most striking results are that contemporary NW African and Iberian populations were found to have originated from distinctly different patrilineages and that the Strait of Gibraltar seems to have acted as a strong (although not complete) barrier to gene flow. In NW African populations, an Upper Paleolithic colonization that probably had its origin in eastern Africa contributed 75% of the current gene pool. In comparison, approximately 78% of contemporary Iberian Y chromosomes originated in an Upper Paleolithic expansion from western Asia, along the northern rim of the Mediterranean basin. Smaller contributions to these gene pools (constituting 13% of Y chromosomes in NW Africa and 10% of Y chromosomes in Iberia) came from the Middle East during the Neolithic and, during subsequent gene flow, from Sub-Saharan to NW Africa. Finally, bidirectional gene flow across the Strait of Gibraltar has been detected: the genetic contribution of European Y chromosomes to the NW African gene pool is estimated at 4%, and NW African populations may have contributed 7% of Iberian Y chromosomes. The Islamic rule of Spain, which began in a.d. 711 and lasted almost 8 centuries, left only a minor contribution to the current Iberian Y-chromosome pool. The high-resolution analysis of the Y chromosome allows us to separate successive migratory components and to precisely quantify each historical layer.  相似文献   

11.
Genomic rearrangements leading to deletion or duplication of gene(s) resulting in alterations in gene copy number underlie the molecular lesion in several genetic disorders. Methods currently used to determine gene copy number including real time PCR, southern hybridization, fluorescence in situ hybridization, densitometric scanning of PCR product etc. have certain disadvantages and are also expensive and time consuming. Herein, we describe a simple and rapid method to assess gene copy number using denaturing high performance liquid chromatography (dHPLC). We used X chromosome genes as model to compare the gene copy numbers present on this chromosome in males and females. DNA from these samples were amplified by biplex PCR using primer pairs specific for X chromosome genes only (target gene) and for genes present on both X and Y chromosomes (internal control). Amplified products were analyzed using HPLC under non-denaturing conditions. The ratio of peak areas (target gene/internal control) of the amplified products was approximately twice in female samples than male samples (p < 0.001) demonstrating that the differential gene copy number can be easily detected using this method. This method can potentially be used for diagnostic purpose where the need is to distinguish samples based on the differential gene copy numbers.  相似文献   

12.
The gene for Huntington disease (HD) has been localized close to the telomere on the short arm of chromosome 4. However, refined mapping using recombinant HD chromosomes has resulted in conflicting findings and mutually exclusive candidate regions. Previously reported significant nonrandom allelic association between D4S95 and HD provided support for a more proximal location for the defective gene. In this paper, we have analyzed 17 markers, spanning approximately 6 Mb of DNA distal to locus D4S62, for nonrandom association to HD. We confirm the previous findings of nonrandom allelic association between D4S95 and HD. In addition, we provide new data showing significant nonrandom association between HD and 3 markers at D4S133 and D4S228, which are approximately 3 Mb telomeric to D4S95.  相似文献   

13.
We present a high density physical map of homoeologous group 7 chromosomes from Triticum aestivum L. using a series of 54 deletion lines, 6 random amplified polymorphic DNA (RAPD) markers and 91 cDNA or genomic DNA clones from wheat, barley and oat. So far, 51 chromosome segments have been distinguished by molecular markers, and 54 homoeoloci have been allocated among chromosomes 7A, 7B and 7D. The linear order of molecular markers along the chromosomes is almost identical in the A- B- and D-genome of wheat. In addition, there is colinearity between the physical and genetic maps of chromosomes 7A, 7B and 7D from T. aestivum, indicating gene synteny among the Triticeae. However, comparison of the physical map of chromosome 7D from T. aestivum with the genetic map from Triticum tauschii some markers have been shown to be physically allocated with distortion in more distal chromosome regions. The integration of genetic and physical maps could assist in estimating the frequency and distribution of recombination in defined regions along the chromosome. Physical distance did not correlate with genetic distance. A dense map facilitates the detection of multiple rearrangements. We present the first evidence for an interstitial inversion either on chromosome arm 7AS or 7DS of Chinese Spring. Molecularly tagged chromosome regions (MTCRs) provide landmarks for long-range mapping of DNA fragments.  相似文献   

14.
Huntington’s disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant inheritance. The disease is caused by a CAG trinucleotide repeat expansion located in the first exon of the HD gene. The CAG repeat is highly polymorphic and varies from 6 to 37 repeats on chromosomes of unaffected individuals and from more than 30 to 180 repeats on chromosomes of HD patients. In this study, we show that the number of CAG repeats in the HD gene can be determined by restriction of the DNA with the endonuclease EcoP15I and subsequent analysis of the restriction fragment pattern by electrophoresis through non-denaturing polyacrylamide gels using the ALFexpress DNA Analysis System. CAG repeat numbers in the normal (30 and 35 repeats) as well as in the pathological range (81 repeats) could be accurately counted using this assay. Our results suggest that this high-resolution method can be used for the exact length determination of CAG repeats in HD genes as well as in genes affected in related CAG repeat disorders.  相似文献   

15.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

16.
We investigated the genetic interactions between mutations affecting chromosome structure and partitioning in Bacillus subtilis. Loss-of-function mutations in spoIIIE (encoding a putative DNA translocase) and smc (involved in chromosome structure and partitioning) caused a synthetic lethal phenotype. We constructed a conditional mutation in smc and found that many of the spoIIIE smc double-mutant cells had a chromosome bisected by a division septum. The growth defect of the double mutant was exacerbated by a null mutation in the chromosome partitioning gene spo0J. These results suggest that mutants defective in nucleoid structure are unable to move chromosomes out of the way of the invaginating septum and that SpoIIIE is involved in repositioning these bisected chromosomes during vegetative growth.  相似文献   

17.
We have developed an X-irradiation:cell fusion procedure that segregates segments of human chromosomes lacking selectable markers and have used this approach to construct somatic cell hybrids retaining fragments of human chromosome 4 as the only human material. To identify hybrids retaining a small chromosomal fragment in the region of the Huntington disease (HD) gene, we used Southern blot analysis to screen 72 hybrid lines for the presence or absence of seven chromosome 4 single-copy loci. These data, combined with in situ hybridization experiments, identified three hybrids of interest. One of these cell lines, C25, stably retains a 10,000- to 20,000-kb fragment of distal 4p in the vicinity of the HD gene, translocated to a hamster chromosome. Field-inversion gel electrophoresis revealed no evidence of rearrangements in the human DNA present in C25. In combination with similar radiation hybrids, C25 is a valuable tool for isolating DNA probes near the HD gene.  相似文献   

18.
Sola L  Gornung E 《Genetica》2001,111(1-3):397-412
The zebrafish, Danio rerio, has recently become the model system for the genetic analysis of vertebrate development. This paper reviews the advances in zebrafish cytogenetics, obtained through classical and molecular techniques, which will lead to the assignment of specific linkage groups to specific chromosome pairs in the zebrafish genome project. Several chromosome pairs of the 50-chromosome karyotype of D. rerio were differentially stained by classical staining techniques and additional information has been obtained by molecular cytogenetics. Indeed, the analysis of constitutive heterochromatin by C-banding and base-specific fluorochrome staining had suggested a differential composition of peri- and paracentromeric constitutive heterochromatin. The chromosome mapping of distinct AT- and GC-rich zebrafish satellite DNAs by means of PRINS (Primed in situ) and multicolor FISH (Fluorescence in situ Hybridization) has confirmed this hypothesis, which therefore provided the chromosome localization of 10% of the zebrafish genome. The analysis of nucleolus organizer regions (NORs) by silver staining and by FISH with 18S rDNA has also revealed the existence of variable and inactive NORs, in addition to those on the terminal regions of the long arms of the three NOR-bearing chromosome pairs. Other multicopy genes, such as minor ribosomal genes, or multicopy repeats, such as telomere specific sequences, have now been mapped on zebrafish chromosomes. The latest advancement in zebrafish molecular cytogenetics is the chromosome mapping of single locus genes. Single-copy genes from each of the 25 genetic linkage groups are now being mapped on zebrafish chromosomes by using PAC clones.  相似文献   

19.
The human genome contains four ETF1 (eukaryotic translation termination factor 1) homologous sequences, localized on chromosomes 5, 6, 7 and X, and corresponding to a functional gene on chromosome 5 and three processed pseudogenes on the other chromosomes. ETF1 genomic or cDNA probes were mapped by fluorescence in situ hybridization to 5q31, 6p21, 7q11 and Xp11.4-->p11.1. A microsatellite marker (D5S500) was identified in intron 7 of the functional ETF1 gene providing its exact position in the 5q31 band. Thus, the ETF1 gene is located in a 5q region which contains unidentified genes responsible for genetic or malignant disorders, and it might be considered as a candidate gene involved in the pathogenesis of these diseases.  相似文献   

20.
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一,适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL,分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryzasativa ssp.indica‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp.japonica‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料,以P≤0.01为阈值,对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL,分别位于第3、第4、第5和第8染色体;QTL的加性效应值变化范围为–6.4––2.7,加性效应百分率变化范围为–6.4%––2.7%;qHD-3和qHD-8加性效应值较大,表现主效基因特征。为了进一步定位qHD-3和qHD-8,在目标区域加密16对SSR引物,qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085–RM8271之间,其遗传距离分别为13.9cM和6.4cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号