首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasopressin, MSEL-neurophysin and copeptin have been isolated from guinea pig and rat neurophypophyses and their amino acid sequences have been determined. Whereas in rat processing of the three-domain precursor is complete, in the guinea pig a 132-residue fragment including MSEL-neurophysin and copeptin linked by an arginine residue has been characterized. This incomplete maturation (20% of the precursor) could be due to a deletion of an acidic residue in guinea pig copeptin when compared with other mammalian copeptins.  相似文献   

2.
Mammalian neurohypophyseal hormones, oxytocin and vasopressin, are known to be synthesized as part of two larger precursors containing, respectively, a VLDV-neurophysin and a MSEL-neurophysin together with its associated glycopeptide. Starting from ostrich neurohypophyses, a "big" neurophysin was isolated and chemically characterized. Following sequence determination of the CNBr-derived fragments and of peptides obtained from trypsin and V8-protease digestion of the oxidized protein, this "big" neurophysin was found to contain an MSEL-neurophysin moiety (94 residues) still covalently associated with the COOH-terminal glycopeptide (38 residues, copeptin). This study demonstrates that the ostrich MSEL-neurophysin sequence closely resembles all known MSEL-neurophysin sequences and that, furthermore, it does not contain the single amino acid insertion shown previously in the ostrich VLDV-neurophysin. It is also shown that the stretch of amino acids, linking the MSEL-neurophysin and the copeptin, is clearly different from its mammalian homologues and lacks the Arg residue normally recognized by the cleaving enzyme. This study also demonstrates that the ostrich copeptin is more closely related to the amphibian copeptin sequence than to its mammalian homologue, leading to the hypothesis that two families of copeptin molecules might exist. Thus, the ostrich MSEL-neurophysin-copeptin molecule is the first "big" neurophysin reported in birds and, together with the guinea pig and amphibian homologues, represents the third example of partial or no neurophysin-copeptin cleavage.  相似文献   

3.
Vasotocin-associated neurophysin (MSEL-neurophysin) from the frog Rana esculenta has been isolated and sequenced through tryptic and staphylococcal proteinase peptides and cyanogen bromide fragments. This protein appears homologous to the mammalian vasopressin-associated neurophysin with a C-terminal glycopeptide extension homologous to the mammalian copeptin. In contrast to the two-step processing of mammalian vasopressin/MSEL-neurophysin/copeptin precursor, a single cleavage is therefore involved in the processing of the amphibian vasotocin/neurophysin precursor. It appears that the physiological release of the vasopressin-like hormone from the N-terminal end of the protein precursor is not dependent upon a previous trimming of the C-terminal copeptin-like moiety.  相似文献   

4.
M T Chauvet  J Chauvet  R Acher 《FEBS letters》1983,163(2):257-260
The vasopressin precursor is composed of 3 domains, namely vasopressin, MSEL-neurophysin and a glycopeptide. Processing occurs during axonal transport from hypothalamus to neurohypophysis from which the 3 fragments can be isolated. The glycopeptide fragment of the rat vasopressin precursor has been purified and sequenced. Despite the fact that rat MSEL-neurophysin is shortened (93 residues instead of 95 for other mammals), rat glycopeptide has 39 residues, as do the other mammalian glycopeptides, suggesting a similar processing. Fifteen substitutions are however observed when compared to ox glycopeptide. The C-terminal part of MSEL-neurophysin (residues 77-93) and the glycopeptide are encoded by the same exon and the homologies when compared with their bovine counterparts are 58% and 62% respectively. In contrast, the central part of rat MSEL-neurophysin (residues 10-76), which is encoded by a separate exon, displays 96% of homology; vasopressin and the N-terminal part of MSEL-neurophysin (residues 1-9), encoded by a third exon, are nearly invariant.  相似文献   

5.
J Chauvet  M T Chauvet  R Acher 《FEBS letters》1987,217(2):180-183
The guinea pig two-domain precursor of MSEL-neurophysin and copeptin has been passed through a trypsin-Sepharose column in order to mimic the enzyme processing by a membrane-bound endopeptidase. Only two cleavages were observed located in the inter-domain sequence (at Arg-94 and Arg-98), in contrast to several additional cleavages found when free neurophysin or copeptin is subjected to soluble trypsin. Because the physiological maturation involves a single cleavage at Arg-94, both local accessibility in the precursor and narrow specificity of the enzyme are implied in the processing.  相似文献   

6.
R Acher  J Chauvet 《Biochimie》1988,70(9):1197-1207
Neurohypophysial hormones and neurophysins are derived from common precursors processed during the axonal transport from the hypothalamus to the neurohypophysis. Two neurohormones, an oxytocin-like and a vasopressin-like, on one hand, two neurophysins, termed VLDV-and MSEL-neurophysins according to residues in positions 2, 3, 6 and 7, on the other, are usually found in vertebrate species. In contrast to placental mammals that have oxytocin and arginine vasopressin, marsupials have undergone a peculiar evolution. Two pressor peptides, lysipressin and vasopressin for American species, lysipressin and phenylpressin for Australian macropods, have been identified in individual glands and it is assumed that the primordial vasopressin gene has been duplicated in these lineages. On the other hand, the reptilian mesotocin is still present in Australian species instead of the mammalian oxytocin, while the North American opossum has both hormones and South American opossums have only oxytocin. The neurophysin domain of each precursor is encoded by 3 exons and different evolutionary rates have been found for the 3 corresponding parts of the protein. The central parts, encoded by the central exons, are evolutionarily very stable and nearly identical in the 2 neurophysins of a given species. Recurrent gene conversions have apparently linked the evolutions of the 2 precursor lineages. In mammals, the 3-domain precursor of vasopressin is processed in 2 stages: a first cleavage splitting off vasopressin and a second cleavage separating MSEL-neurophysin from copeptin. Two distinct enzymatic systems seem to be involved in these cleavages. Processing is usually complete at the level of the neurohypophysis, but an intermediate precursor encompassing MSEL -neurophysin and copeptin linked by an arginine residue has been characterized in guinea pig. In vitro processing of this intermediate through trypsin--Sepharose reveals cleavages only in the interdomain region. In non-mammalian tetrapods, such as birds and amphibians, mesotocin and vasotocin are associated with neurophysins in precursors similar to those found in mammals. However, processing of the vasotocin precursor seems to be different from the processing of the vasopressin precursor, with a single cleavage leading to the hormone release.  相似文献   

7.
Vasopressin, MSEL-neurophysin and a glycopeptide, here referred to as copeptin, are three fragments of a common protein precursor processed during axonal transport from hypothalamus to neurohypophysis. Neurohormones and neurophysins purified from 7-9-month-old bovine foetuses have previously been shown to be identical with those found in the adult. Copeptin has now been isolated from 7-9-month and 3-month-old bovine foetuses and chemically characterized. It can be concluded from the nature of the three precursors that the same vasopressin gene is expressed in the adult and the 7-9-month-old foetus.  相似文献   

8.
The amino acid sequence of guinea pig MSEL-neurophysin has been determined using tryptic peptides derived from the performic acid-oxidized protein and staphylococcal proteinase peptides obtained from the reduced-carboxamidomethylated neurophysin. Guinea pig MSEL-neurophysin consists of a 93-residue polypeptide chain that shows 12 substitutions and 2 deletions when compared to bovine MSEL-neurophysin. It displays the highest number of variations among known mammalian MSEL-neurophysins. These variations are mainly found in the C-terminal region (residues 88-93). Moreover guinea pig MSEL-neurophysin, like rat homologous protein, exhibits substitutions in positions 2, 5, 29 and 81 and lacks an arginine in the penultimate position. Comparison between eight mammalian MSEL-neurophysins reveals a highly conserved region (residues 1 to 88) and a hypervariable region (residues 89 to 93/95). On the other hand the eight species examined are endowed with arginine vasopressin except pig, which has a lysine vasopressin. In the vasopressin-MSEL-neurophysin precursor, the hormonal moiety and the MSEL region of neurophysin (residues 1-9) are encoded by a common exon in ox, rat and man; it can be concluded that this exon is evolutionarily conservative in contrast to the one encoding the C-terminal region of MSEL-neurophysin.  相似文献   

9.
A ‘big’ frog (Rana esculenta) neurophysin, encompassing sequences homologous to mammalian MSEL-neurophysin and copeptin, has been passed through a trypsin-Sepharose column in order to compare its conformation with that of the two-domain intermediate precursor isolated from guinea pig. Whereas the polypeptide possesses 8 arginine residues, only two cleavages were observed located in a putative inter-domain sequence (at Arg-94 and Arg-114). Because free vasotocin has been isolated from the frog, it is assumed that pro-vasotocin has a three-domain conformation similar to that of pro-vasopressin but processing in amphibians involves only one step rather than two steps as in mammals.  相似文献   

10.
Struck J  Morgenthaler NG  Bergmann A 《Peptides》2005,26(12):2500-2504
Vasopressin is one of the key regulators of the body's water and solute balance. When this balance is pathologically disturbed, determination of serum vasopressin concentrations might be a helpful tool for guiding therapy. However, due to its instability and considerable association to platelets, reliable measurement of circulating vasopressin is difficult to achieve, if at all. In search of a more robust way for quantifying vasopressin release, we identified copeptin, a glycopeptide with unknown function, as an alternative diagnostic target. Since copeptin is derived from the same precursor peptide as vasopressin, released amounts of copeptin should mirror those of vasopressin. With a newly developed sensitive sandwich immunoassay, we detected strongly elevated concentrations of fully processed copeptin in serum of septic shock patients. The magnitude of elevation and the high stability of copeptin in serum and plasma indicate that copeptin measurement is not affected by the problems, which are associated with the direct measurement of vasopressin, and thus is apparently suitable to indirectly determine the release of vasopressin.  相似文献   

11.
Neurohypophysial hormone precursors are small proteins processed into several fragments during axonal transport from hypothalamus to neurohypophysis. From 3-month-old fetal bovine pituitaries the three fragments of vasopressin precursor, arginine vasopressin, MSEL-neurophysin and copeptin, and the two fragments of oxytocin precursor, oxytocin and VLDV-neurophysin, have been isolated and characterized. These polypeptides are identical to those previously identified in the late fetus (7-9 months old) and in the adult. It is concluded that the same genes are expressed during fetal and adult lives, the vasopressin gene appearing roughly four times more active than the oxytocin gene in the early fetus. Vasotocin, mesotocin and additional neurophysin have not been detected in the early fetus.  相似文献   

12.
Neurohypophysial hormone-Neurophysin complexes have been prepared from posterior pituitary glands of Artiodactyla (ox, sheep, pig), Perissodactyla (horse) and Cetacea (whale), by fractionated salt precipitation. The components have been separated by molecular sieving in 0.2 M acetic acid and neurophysins have been purified by ion-exchange chromatography on DEAE-Sephadex A-50. Two types of neurophysins, MSEL-neurophysins and VLDV-neurophysins, can be distinguished according to the amino acid residues in positions 2, 3, 6 and 7. MSEL-neurophysins of sheep, ox and pig have been characterized by the amino acid sequence. Ovine and bovine MSEL-neurophysins are nearly identical (one substitution out of 95 residues) and porcine MSEL-neurophysin is very similar (four substitutions and an apparent 3-residue C-terminal deletion). The biological function of neurophysins might be the carriage of neurohypophysial hormones but in this respect, each type of neurophysin is not clearly specific for a given hormone. On the other hand, each neurophysin might share a common precursor with a neurohypophysial hormone, the two parts remaining associated after cleavage. However, in the sheep posterior pituitary gland, the molar proportions of the two types of neurophysins, oxytocin and arginine vasopressin, are not equal, MSEL-neurophysin being more abundant than the other components. If a common precursor exists, neurophysins and neurohypophysial hormones are not merely produced by a simple cleavage mechanism.  相似文献   

13.
Direct measurement of the nonapeptide vasopressin has been limited by analyte instability ex vivo and in vivo rapid degradation, low serum concentrations requiring a sensitive assay and inherent secretory pulsatility. Copeptin is a 39 amino acid glycopeptide cleavage product of vasopressin synthesis with high stability, providing a marker of vasopressin secretion. Copeptin measurement has applications in diagnosis of diabetes insipidus and other diseases with altered vasopressin secretion. This review summarises our current understanding of serum copeptin measurement in diabetes insipidus and possible future applications of copeptin assays. As vasopressin is a stress hormone, there is emerging evidence on the use of copeptin for diagnosis and prognostication of disorders such as syndrome of inappropriate anti-diuretic hormone secretion, diabetes mellitus, critical illness, stroke, cardiovascular disease, respiratory disease, renal disease and thermal stress. Copeptin concentration measurement is likely to improve the diagnostic reliability of diabetes insipidus and, as a marker of stress, may have diagnostic or prognostic utility in specific clinical circumstances. Further studies are needed to determine if goal-directed therapy using plasma copeptin concentrations may improve patient outcomes.  相似文献   

14.
Vasotocin-associated neurophysin (MSEL-neurophysin) has been purified from goose neurohypophysis through molecular sieving and high-pressure reverse-phase liquid chromatography (HPLC). The protein has a molecular mass (measured by SDS-polyacrylamide gel electrophoresis) of 17 kDa in contrast to 10 kDa found for the mammalian MSEL-neurophysins. Complete amino acid sequence (131 residues) has been determined mainly through tryptic or staphylococcal proteinase peptides derived from carboxyamidomethylated neurophysin, isolated by HPLC and microsequenced. N- and C-terminal sequences have been established by Edman degradation or action of carboxypeptidase Y, respectively, applied on the native protein. Goose MSEL-neurophysin is homologous to the two-domain "big" MSEL-neurophysin previously identified in the frog. It appears that in non-mammalian tetrapods, namely birds and amphibians, the proteolytic processing of the pro-vasotocin involves only one cleavage, releasing the hormone moiety and a "big" neurophysin with two domains homologous to mammalian MSEL-neurophysin and copeptin, respectively. Comparison of the avian protein with its mammalian and amphibian counterparts reveals that the first half of the polypeptide chain is evolutionarily much less variable than the second and that the goose protein resembles the frog protein much more than the mammalian one.  相似文献   

15.
Barat C  Simpson L  Breslow E 《Biochemistry》2004,43(25):8191-8203
These studies were aimed at an initial characterization of the human vasopressin precursor and the evaluation of factors leading to misfolding by the pathological 87STOP mutation. This mutation deletes the precursor's glycosylated copeptin segment, which has been considered unnecessary for folding, and the last seven neurophysin residues. We investigated the role in folding of the last seven neurophysin residues by comparing the properties of the 87STOP precursor and its derivative neurophysin with those of the corresponding wild-type proteins from which copeptin had been deleted, leading to the following conclusions. First, despite modulating effects on several protein properties, the last seven neurophysin residues do not make a significant net thermodynamic contribution to precursor folding; stabilities of the mutant and wild-type precursors to both guanidine denaturation and redox buffer unfolding are similar, as are in vitro folding rates. Second, the monomeric forms of both precursors are unstable and predicted to fold inefficiently at physiological pH and temperature, as evidenced by precursor behavior in redox buffers and by thermodynamic calculations. Third, both precursors are significantly less stable than the bovine oxytocin precursor. These results, together with earlier studies elsewhere of vasopressin precursor behavior within rat neurons, are shown to represent a self-consistent argument for a role for glycosylated copeptin in vasopressin precursor folding in vivo, copeptin most probably assisting refolding by facilitating interaction of misfolded monomers with the calnexin/calreticulin system. This hypothesis provides an explanation for the absence of copeptin in the more stable oxytocin precursor and suggests that the loss of copeptin contributes to 87STOP pathogenicity. Reported cell culture studies of rat precursor folding are also discussed in this context. Most generally, the results emphasize the significance of monomer stability in the folding pathways of oligomeric proteins.  相似文献   

16.
Studies on New World hystricomorph rodents have revealed interesting structural divergences in the peptide hormones of the islets of Langerhans, particularly with respect to insulin and glucagon. Herein we report the isolation and sequencing of a cDNA encoding the precursor of pancreatic polypeptide (PP) from a guinea pig pancreas cDNA library. The 126-residue precursor sequence is predicted to include a 26-residue NH2-terminal signal peptide followed by the 36-amino acid PP hormonal sequence and a large COOH-terminal extension. The sequence identity between guinea pig and human PP is 89% (32/36 residues), and the predicted sequence is in agreement with that reported by Eng et al. (Eng, J., Huang, C.-G., Pan, Y.-C. E., Hulmes, J. D., and Yalow, R. S. (1987) Peptides 8, 165-168). In contrast, the icosapeptide domain in the guinea pig precursor exhibits only 40% (8/20) identity with the corresponding human precursor domain, and the COOH-terminal extension differs greatly in both sequence and size. The guinea pig precursor lacks the monobasic processing site (Pro-Arg) found at the COOH terminus of the icosapeptide domain in human, ovine, canine, and feline proPP. An icosapeptide is thus not likely to be liberated as such from this precursor. Of particular interest in guinea pig proPP is the substitution of serine for arginine at the dibasic amino acid processing site on the COOH-terminal side of the PP domain. Results of radioimmunoassays of gel-filtered protein fractions from a guinea pig pancreas extract indicate that efficient proteolytic cleavage takes place at this Lys-Ser site and that mature guinea pig PP is normally carboxyamidated.  相似文献   

17.
Neurohypophyseal hormones are fragments of precursor proteins that include specific neurophysins and are processed during axonal transport. Neurohormones and neurophysins purified from 7-9 month old bovine foetuses have been characterized by amino acid analysis and partial amino acid sequences. Oxytocin and arginine vasopressin, on one hand, and VLDV-neurophysin and MSEL-neurophysin, on the other, are identical to products previously characterized in the adult. Whereas oxytocin and vasopressin genes seem to be expressed at the same rates in the adult, as judged by the amounts of their peptide products in neurohypophysis, in the late foetus the vasopressin gene appears to be roughly three times more active than the oxytocin gene.  相似文献   

18.
19.
Precursors of neurohypophysial hormones are small proteins processed into nonapeptide hormones and neurophysins during axonal transport to the neurohypophysis. In mammals, oxytocin is associated with VLDV-neurophysin and vasopressin with MSEL-neurophysin. In birds, mesotocin and vasotocin are found instead of mammalian oxytocin and vasopressin. From goose, chicken and ostrich posterior pituitary glands, two types of neurophysins related to mammalian VLDV-and MSEL-neurophysins, respectively, have been identified by their N-terminal sequences. It is assumed that, as in mammals, hormonal peptide and the first 9 residues of the corresponding neurophysin are encoded by a common exon and that mesotocin and vasotocin, evolutionary predecessors of oxytocin and vasopressin, are associated in the precursors with VLDV-neurophysin and MSEL-neurophysin, respectively.  相似文献   

20.
1. Glycopeptides in the stomachs of eleven mammalian species, including human, rabbit, horse, cow, pig, goat, sheep, dog, cat, guinea pig and rat were assayed by determining the carbohydrate content of materials which remained after proteolysis. 2. The glycopeptide content was higher in the mucosa than in the muscular layer including serosa, especially in the porcine stomach and the fourth stomachs of the ruminants than in the stomachs of any other animals. 3. The glycopeptide, which was stained with both alcian blue and PAS, was absent or sparingly present in the mucosae of the human, rabbit, horse stomachs and in the mucosae of the first to third stomachs of the cow, goat and sheep, whereas in the mucosae of the pig, dog, cat, guinea pig and rat stomachs and in the mucosae of the fourth stomachs of the cow, goat and sheep, it was found in noticeable extents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号