首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
抗菌肽的研究进展   总被引:5,自引:0,他引:5  
抗菌肽是一大类具有新型抗菌机理的抗生素,本文综述了抗菌肽的分类情况,抗菌肽的作用机制,以及部分正在开发的抗菌肽品种。  相似文献   

2.
A new series of 1beta-methylcarbapenems 1a-i bearing isoxazoloethenyl groups on the pyrrolidine ring has been prepared and evaluated for in vitro antibacterial activity and stability to DHP-I. Most compounds showed excellent antibacterial activity and high stability to DHP-I superior to that of meropenem. Of these new carbapenems, 1a,b,h exhibited the best combination of antibacterial activity and DHP-I stability.  相似文献   

3.
A new series of 1β-methylcarbapenems 1a–i bearing isoxazoloethenyl groups on the pyrrolidine ring has been prepared and evaluated for in vitro antibacterial activity and stability to DHP-I. Most compounds showed excellent antibacterial activity and high stability to DHP-I superior to that of meropenem. Of these new carbapenems, 1a,b,h exhibited the best combination of antibacterial activity and DHP-I stability.  相似文献   

4.
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.  相似文献   

5.
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.  相似文献   

6.
Multi-drug resistant Staphylococcus aureus infections have created a critical need for the development of new classes of antibacterials. Discovery of new naturally derived antibacterial agents with new mechanism of action remains a high priority globally. Several of the available antibacterial agents like β-lactams, polyketides, phenylpropanoids, aminoglycosides, macrolides, glycopeptides, streptogramins and lipopeptides are natural products or their semisynthetic variations. In the current scenario of alarming rise in antibacterial resistance, revisiting natural products with modern chemistry and biology tools has fascinated many medicinal chemists for discovery and development of natural products or derived semisynthetic derivatives as effective antibacterial agents. This review underlines the structures and anti-MRSA activity of various natural product derivatives covering recent reports, in vivo activities and brief Structure Activity Relationships (SARs).  相似文献   

7.
The continued evolution of resistance to antibiotics has led to wide ranging consultation at National and International levels as to how to address this issue. In addition to attempting to limit the spread of resistance there is growing consensus that a cornerstone requirement is the development of new antibiotics to help redress the balance of resistance versus available antibiotics. The availability of new technologies such as genomics has opened up new approaches for antibacterial research. It would appear that from an industry perspective, the research and development of antibiotics should be an attractive option. However, this is not the current perception at the majority of large pharmaceutical companies. In addition, the perceived failure of new technologies to create another golden age of new antibacterial classes has led many companies to prioritise other areas of research and, in some cases, to exit antibacterial research. In response, a plethora of small biotech companies have emerged with an interest in antibacterial discovery and large pharmaceutical companies may look to these as a source of development candidates although, to date, these have contributed a very low number of truly novel antibiotic lead compounds. As a reaction to these changes several initiatives are ongoing to examine ways to incentivise antibacterial research and development and ensure a healthy pipeline of compounds in the 21st Century.  相似文献   

8.
We report here the design, synthesis, and antibacterial activities of novel classes of compounds containing chiral 1,3-oxazinan-2-ones and oxazolidinones as the basic core structures. These compounds are tertiary amines containing the core structures and two aryl substituents. Several of these molecules exhibit potent antibacterial activities against the tested Gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis. These compounds represent new structure scaffolds and can be further optimized to give new antibacterial agents with structures significantly different from those of existing classes of antibiotics.  相似文献   

9.
随着耐药细菌的出现和广泛传播,开发新型抗菌药迫在眉睫。分布在人体不同部位的共生菌能够产生多种抗菌分子以抑制病原菌的定植和感染。人体共生菌的抗菌分子为研发全新结构和作用机制的药物提供了潜在的资源宝库,随着生物信息学、合成生物学、基因组学等组学技术的进一步发展,对人体共生菌抗菌分子的挖掘也会更加深入,为解决耐药问题提供了有效的途径。文中回顾了目前所发现的人体共生菌产生的抗菌分子,并介绍了几种用于挖掘人体共生菌这一天然抗菌药物的资源宝库的方法。随着现代生物工程技术的发展,人体共生菌的抗菌分子将会得到更加全面、系统的探索和应用。  相似文献   

10.
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.  相似文献   

11.
The oxazolidinones are a promising new class of synthetic antibacterial agents. Here, we review recent efforts directed at the discovery of new antibacterial compounds of this class. New structures and structure-activity relationships (SAR) are discussed in the context of earlier work in the field. Key issues of potency, spectrum, selectivity, in vivo efficacy, and pharmacokinetic profile of the new analogs are addressed.  相似文献   

12.
The development of new antibacterial agents to combat worsening antibiotic resistance is still a priority area in anti-infectives research, but in the post-genomic era it has been more difficult than expected to identify new lead compounds from high-throughput screening, and very challenging to obtain antibacterial activity for lead compounds. Bacterial cell-wall peptidoglycan biosynthesis is a well-established target for antibacterial chemotherapy, and recent developments enable the entire biosynthetic pathway to be reconstituted for detailed biochemical study and high-throughput inhibitor screening. This review article discusses recent developments in the availability of peptidoglycan biosynthetic intermediates, the identification of lead compounds for both the earlier cytoplasmic steps and the later lipid-linked steps, and the application of new methods such as structure-based drug design, phage display and surface science.  相似文献   

13.
Synthetic derivatives of the natural product antibiotic novobiocin were synthesized in order to improve their physiochemical properties. A Mannich reaction was used to introduce new side chains at a solvent-exposed position of the molecule, and a diverse panel of functional groups was evaluated at this position. Novobiocin and the new derivatives were tested for their binding to gyrase B and their antibacterial activities against Staphylococcus aureus, Mycobacterium tuberculosis, Francisella tularensis and Escherichia coli. While the new derivatives still bound the gyrase B protein potently (0.07-1.8 μM, IC(50)), they had significantly less antibacterial activity. Two compounds were identified with increased antibacterial activity against M. tuberculosis, with a minimum inhibitory concentration of 2.5 μg/ml.  相似文献   

14.
目的观察铜绿假单胞菌抗菌物质对耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcusaureus,MRSA)的体外抑菌活性。方法用交叉划线接种方法进行铜绿假单胞菌对32株耐甲氧西林金葡菌的体外抗菌活性的测定。结果铜绿假单胞菌抗菌物质对MRSA的体外抑菌活性良好,产生色素的菌株的抗菌活性最好,15株铜绿假单胞菌中,7株产蓝绿色色素的铜绿假单胞菌,对MRSA的抑制率均达到了100%,平均抑菌带的宽度为37.7 mm。结论铜绿假单胞菌抗菌物质对32株MRSA具有较强的抗菌活性,无疑对MRSA感染的抗菌药物研制方面开辟了一条新的途径。这是国内的首次研究报道。  相似文献   

15.
The antibacterial therapeutic area has been described as the perfect storm. Resistance is increasing to the point that our hospitals encounter patients infected with untreatable pathogens, the overall industry pipeline is described as dry and most multinational pharmaceutical companies have withdrawn from the area. Major contributing factors to the declining antibacterial industry pipeline include scientific challenges, clinical/regulatory hurdles and low return on investment. This paper examines these challenges and proposes approaches to address them. There is a need for a broader scientific agenda to explore new approaches to discover and develop antibacterial agents. Additionally, ideas of how industry and academia could be better integrated will be presented. While promising progress in the regulatory environment has been made, more streamlined regulatory paths are still required and the solutions will lie in global harmonization and clearly defined guidance. Creating the right incentives for antibacterial research and development is critical and a new commercial model for antibacterial agents will be proposed. One key solution to help resolve both the problem of antimicrobial resistance (AMR) and lack of new drug development are rapid, cost-effective, accurate point of care diagnostics that will transform antibacterial prescribing and enable more cost-effective and efficient antibacterial clinical trials. The challenges of AMR are too great for any one group to resolve and success will require leadership and partnerships among academia, industry and governments globally.  相似文献   

16.
The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.  相似文献   

17.
At least 18 antibacterial agents are currently undergoing clinical trials for the treatment of infections caused by susceptible and resistant bacteria. The beta-lactam class includes new parenteral carbapenems and cephalosporins with varying spectra of activities. The glycopeptides are antibiotics with in vitro activity primarily against Gram-positive bacteria, including multi-resistant strains. Three quinolones are being investigated for use against a variety of Gram-positive and respiratory Gram-negative organisms. Several other classes of antibacterial agents currently in clinical trials are represented by a glycolipodepsipeptide, a dihydrofolate reductase inhibitor, an oxazolidinone, two peptide antibiotics, a glycylcycline, and a peptide deformylase inhibitor, a member of a new antibacterial class.  相似文献   

18.
Bacterial genomics has provided a plethora of potential targets for antibacterial drug discovery, however, success in the hunt for new antibiotics will hinge on selecting targets with the highest potential. A recent paper by Liu and coworkers describes a new approach to target selection that uncovers strategies used by bacteriophage to disable bacteria. The method uses key phage proteins to identify and validate vulnerable targets and exploits them further in the identification of new antibacterial leads.  相似文献   

19.
Bacterial resistance is inevitable and is a growing concern. It can be addressed only by discovery and development of new agents. However the discovery and development of new antibacterial agents are at an all time low. This article broadly examines the historical as well as current status of antibacterial discovery and provides some perspective as how to address some of the challenges.  相似文献   

20.
Under standard conditions, the peptides and specially the active peptides were obtained from either the denatured hemoglobin that all structures are completely modified or either the native hemoglobin where all structures are intact. In these conditions, antibacterial peptides were isolated from a very complex peptidic hydrolysate which contains more than one hundred peptides having various sizes and characteristics, involving a complex purification process. The new hydrolysis conditions were obtained by using 40% methanol, 30% ethanol, 20% propanol or 10% butanol. These conditions, where only the secondary structure of hemoglobin retains intact, were followed in order to enrich the hydrolyzed hemoglobin by active peptides or obtain new antibacterial peptides. In these controlled peptic hydrolysis of hemoglobin, a selective and restrictive hydrolysate contained only 29 peptides was obtained. 26 peptides have an antibacterial activity against Micrococcus luteus, Listeria innocua, and Escherichia coli with MIC from 187.1 to 1 μM. Among these peptides, 13 new antibacterial peptides are obtained only in these new hydrolysis conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号