首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Alkema  P A Hader  R A Bell  T Neilson 《Biochemistry》1982,21(9):2109-2117
A series of pentaribonucleotides, ApGpXpGpU (where X identical to A, G, C, or U), was synthesized to investigate the effects of flanking G . C pairs on internal Watson-Crick, G . U, and nonbonded base pairs. Sequences ApGpApCpU (Tm = 26 degrees C) and ApGpCpCpU (Tm = 25 degrees C) were each found to form a duplex with non-base-paired internal residues that stacked with the rest of the sequence but were not looped out. ApGpGpCpU also forms a duplex (Tm = 30 degrees C) but with dangling terminal nonbonded adenosines rather than internal nonbonded guanosines. ApGpUpCpU prefers a stacked single-strand conformation. In addition, contribution to duplex stability from an internal A . U or G . C base pair is enhanced by 6 degrees C when flanked by G . C base pairs as compared to A . U base pairs. G . C base pairs flanking an internal G . U base pair were found to be more tolerant to the altered conformation of a G . U pair and result in an increase to stability comparable with that found for an internal A . U base pair.  相似文献   

2.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

3.
4.
The crystal structure of the RNA octamer duplex r(CCCIUGGG)2has been elucidated at 2.5 A resolution. The crystals belong to the space group P21and have unit cell constants a = 33.44 A, b = 43.41 A, c = 49.39 A and beta = 104.7 degrees with three independent duplexes (duplexes 1-3) in the asymmetric unit. The structure was solved by the molecular replacement method and refined to an Rwork/Rfree of 0.185/0.243 using 3765 reflections between 8.0 and 2.5 A. This is the first report of an RNA crystal structure incorporating I.U wobbles and three molecules in the asymmetric unit. Duplex 1 displays a kink of 24 degrees between the mismatch sites, while duplexes 2 and 3 have two kinks each of 19 degrees and 27 degrees, and 24 degrees and 29 degrees, respectively, on either side of the tandem mismatches. At the I.U/U.I mismatch steps, duplex 1 has a twist angle of 33.9 degrees, close to the average for all base pair steps, but duplexes 2 and 3 are underwound, with twist angles of 24.4 degrees and 26.5 degrees, respectively. The tandem I.U wobbles show intrastrand purine-pyrimidine stacking but exhibit interstrand purine-purine stacking with the flanking C.G pairs. The three independent duplexes are stacked non-coaxially in a head-to-tail fashion to form infinite pseudo-continuous helical columns which form intercolumn hydrogen bonding interactions through the 2'-hydroxyl groups where the minor grooves come together.  相似文献   

5.
The stability and structure of RNA duplexes with consecutive A.C, C.A, C.C, G.G, U.C, C.U, and U.U mismatches were studied by UV melting, CD, and NMR. The results are compared to previous results for GA and AA internal loops [SantaLucia, J., Kierzek, R., & Turner, D. H. (1990) Biochemistry 29, 8813-8819; Peritz, A., Kierzek, R., & Turner, D.H. (1991) Biochemistry 30, 6428-6436)]. The observed order for stability increments of internal loop formation at pH 7 is AG = GA approximately UU greater than GG greater than or equal to CA greater than or equal to AA = CU = UC greater than or equal to CC greater than or equal to AC. The results suggest two classes for internal loops with consecutive mismatches: (1) loops that stabilize duplexes and have strong hydrogen bonding and (2) loops that destabilize duplexes and may not have strong hydrogen bonding. Surprisingly, rCGCUUGCG forms a very stable duplex at pH 7 in 1 M NaCl with a TM of 44.8 degrees C at 1 x 10(-4) M and a delta G degrees 37 of -7.2 kcal/mol. NOE studies of the imino protons indicate hydrogen bonding within the U.U mismatches in a wobble-type structure. Resonances corresponding to the hydrogen-bonded uridines are located at 11.3 and 10.4 ppm. At neutral pH, rCGCCCGCG is one of the least stable duplexes with a TM of 33.2 degrees C and delta G degrees 37 of -5.1 kcal/mol. Upon lowering the pH to 5.5, however, the TM increases by 12 degrees C, and delta G degrees 37 becomes more favorable by 2.5 kcal/mol. The pH dependence of rCGCCCGCG may be due to protonation of the internal loop C's, since no changes in thermodynamic parameters are observed for rCGCUUGCG between pH 7 and 5.5. Furthermore, two broad imino proton resonances are observed at 10.85 and 10.05 ppm for rCGCCCGCG at pH 5.3, but not at pH 6.5. This is also consistent with C.C+ base pairs forming at pH 5.5. rCGCCAGCG and rGGCACGCC have a small pH dependence, with TM increases of 5 and 3 degrees C, respectively, upon lowering the pH from 7 to 5.5. rCGCCUGCG and rCGCUCGCG also show little pH dependence, with TM increases of 0.8 and 1.4 degrees C, respectively, upon lowering the pH to 5.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
Structural defects, affecting T4 DNA ligase function, were revealed with the help of synthetic DNA duplexes, containing modifications at single nick. Changes of configuration at C2' and C3' atoms of furanose in the acceptor terminus lead to total blocking of the nick sealing activity of T4 DNA ligase. On the contrary, substitution of 3'-terminal deoxyribonucleotide for ribonucleotide doesn't affect the enzyme's action. The duplex looses all of it's substrate activity if the next from the nick G.C pair is substituted for the noncomplementary G.C pair. In DNA duplexes containing an unpaired base in the nick, elimination of the extrahelical nucleotide proceeds the ligation step. In these cases the duplex substrate activity decreases depending on the extent of extrahelical base stacking into the double stranded DNA.  相似文献   

8.
The thermodynamics and kinetics for base-pair opening of the P1 duplex of the Tetrahymena group I ribozyme were studied by NMR hydrogen exchange experiments. The apparent equilibrium constants for base pair opening were measured for most of the imino protons in the P1 duplex using the base catalysts NH3, HPO4(2-) or TRIS. These equilibrium constants were also measured for several modified P1 duplexes, and the C-2.G23 base pair was the most stable base pair in all the duplexes. The conserved U-1*G22 base pair is required for activity of the ribozyme and the data here show that this wobble base pair destabilizes neighboring base pairs on only one side of the wobble. A 2'-OMe modification on the U-3 residue stabilized its own base pair but had little effect on the neighboring base pairs. Three base pairs, U-1*G22, C-2*G23 and A2*U21 showed unusual equilibrium constants for opening and possible implications of the opening thermodynamics of these base pairs on the undocking rates of the P1 helix with catalytic core are discussed.  相似文献   

9.
The interactions of oligonucleotide analogs, 12-mers, which contain deoxyribo- or 2'-O-methylribose sugars and methylphosphonate internucleotide linkages with complementary 12-mer DNA and RNA targets and the effect of chirality of the methylphosphonate linkage on oligomer-target interactions was studied. Oligomers containing a single Rp or Sp methylphosphonate linkage (type 1) or oligomers containing a single phosphodiester linkage at the 5'-end followed by 10 contiguous methylphosphonate linkages of random chirality (type 2) were prepared. The deoxyribo- and 2'-O-methylribo- type 1 12-mers formed stable duplexes with both the RNA and DNA as determined by UV melting experiments. The melting temperatures, Tms, of the 2'-O-methylribo-12-mer/RNA duplexes (49-53 degrees C) were higher than those of the deoxyribo-12mer/RNA duplexes (31-36 degrees C). The Tms of the duplexes formed by the Rp isomers of these oligomers were approximately 3-5 degrees C higher than those formed by the corresponding Sp isomers. The deoxyribo type 2 12-mer formed a stable duplex, Tm 34 degrees C, with the DNA target and a much less stable duplex with the RNA target, Tm < 5 degrees C. In contrast, the 2'-O-methylribo type 2 12-mer formed a stable duplex with the RNA target, Tm 20 degrees C, and a duplex of lower stability with the DNA target, Tm < 5 degrees C. These results show that the previously observed greater stability of oligo-2'-O-methylribonucleotide/RNA duplexes versus oligodeoxyribonucleotide/RNA duplexes extends to oligomers containing methylphosphonate linkages and that the configuration of the methylphosphonate linkage strongly influences the stability of the duplexes.  相似文献   

10.
High-resolution proton and phosphorus nuclear magnetic resonance studies are reported on the self-complementary d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6meG X A 12-mer when N3 = A3 and O6meG X G 12-mer when N3 = G3), which contain symmetry-related A3 X O6meG10 and G3 X O6meG10 interactions in the interior of the helices. We observe inter-base-pair nuclear Overhauser effects (NOE) between the base protons at the N3 X O6meG10 modification site and protons of flanking G2 X C11 and G4 X C9 base-pairs, indicative of the stacking of N3 and O6meG10 bases in both O6meG X A 12-mer and O6meG X G 12-mer duplexes. We have assigned all the base and a majority of the sugar protons from two-dimensional proton-correlated and nuclear Overhauser effect experiments on the O6meG X A 12-mer duplex and O6meG X G 12-mer duplex in solution. The observed NOEs establish that the A3 and O6meG10 at the modification site and all other residues adopt the anti configuration about the glycosidic bond, and that the O6meG X A 12-mer forms a right-handed duplex. The interaction between the bulky purine A3 and O6meG10 residues in the anti orientation results in large proton chemical shift perturbations at the (G2-A3-G4) X (C9-O6meG10-C11) segments of the helix. By contrast, we demonstrate that the O6meG10 residue adopts a syn configuration, while all other bases adopt an anti configuration about the glycosidic bond in the right-handed O6meG X G 12-mer duplex. This results in altered NOE patterns between the base protons of O6meG10 and the base and sugar protons of flanking C9 and C11 residues in the O6meG X G 12-mer duplex. The phosphorus backbone is perturbed at the modification site in both duplexes, since the phosphorus resonances are dispersed over 2 parts per million in the O6meG X A 12-mer and over 1 part per million in the O6meG X G 12-mer compared to a 0.5 part per million dispersion for an unperturbed DNA helix. We propose tentative pairing schemes for the A3 X O6meG10 and G3 X O6meG10 interactions in the above dodecanucleotide duplexes.  相似文献   

11.
M W Kalnik  B F Li  P F Swann  D J Patel 《Biochemistry》1989,28(15):6182-6192
The pairing of O6etG with C located four base pairs in from either end of the self-complementary d(C1-G2-C3-O6etG4-A5-G6-C7-T8-C9-G10-C11-G12) duplex (designated O6etG.C 12-mer) has been investigated from an analysis of proton and phosphorus two-dimensional NMR experiments. The structural consequences of increasing the alkyl group size were elucidated from a comparative study of the pairing of O6meG4 with C9 in a related sequence (designated O6meG.C 12-mer). The NMR parameters for both O6alkG-containing dodecanucleotides are also compared with those of the control sequence containing G4.C9 base pairs (designated G.C 12-mer). The NOE cross-peaks detected in the two-dimensional NOESY spectra of the O6alkG.C 12-mer duplexes in H2O solution establish that the O6etG4/O6meG4 and C9 bases at the lesion site stack into the helix between the flanking C3.G10 and A5.T8 Watson-Crick base pairs. The amino protons of C9 at the O6alkG4-C9 lesion site resonate as an average resonance at 7.78 and 7.63 ppm in the O6etG.C 12-mer and O6meG.C 12-mer duplexes, respectively. The observed NOEs between the amino protons of C9 and the CH3 protons of O6alkG4 establish a syn orientation of the O6-alkyl group with respect to the N1 of alkylated guanine. A wobble alignment of the O6alkG4.C9 base pair stablized by two hydrogen bonds, one between the amino group of C9 and N1 of O6alkG and the other between the amino group of O6alkG and N3 of C9, is tentatively proposed on the basis of the NOEs between the amino protons of C9 at the lesion site and the imino protons of flanking Watson-Crick base pairs. The proton and phosphorus chemical shift differences between the O6etG.C 12-mer and O6meG.C 12-mer duplexes are small compared to the differences between these O6alkG-containing duplexes and the control G.C 12-mer duplex.  相似文献   

12.
M W Kalnik  B F Li  P F Swann  D J Patel 《Biochemistry》1989,28(15):6170-6181
High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O6etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O6etG.T 12-mer) containing two symmetrically related O6etG.T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O6meG.T lesion sites (designated O6meG.T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G.T mismatch sites (designated G.T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O6etG.T 12-mer, O6meG.T 12-mer, and G.T 12-mer duplexes in H2O and D2O solutions. The distance connectivities observed in the NOESY spectra of the O6alkG.T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O6alkG4 and T9 bases at the lesion site. The imino proton of T9 at the O6alkG.T lesion sites resonates at 8.85 ppm in the O6etG.T 12-mer duplex and at 9.47 ppm in the O6meG.T 12-mer duplex. The large upfield shift of the T9 imino proton resonance at the O6alkG4.T9 lesion site relative to that of the same proton in the G4.T9 wobble pair (11.99 ppm) and the A4.T9 Watson-Crick pair (13.95 ppm) in related sequences establishes that the hydrogen bonding of the imino proton of T9 to O6alkG4 is either very weak or absent. The imino proton of T9 develops NOEs to the CH3 protons of the O6etG and O6meG alkyl groups across the base pair, as well as to the imino and H5 protons of the flanking C3.G10 base pair and the imino and CH3 protons of the flanking A5.T8 base pair in the O6alkG.T 12-mer duplexes. These observations establish that the O6alkG4 and T9 residues are stacked into the duplex and that the O6CH3 and O6CH2CH3 groups of O6alkG4 adopt a syn orientation with respect to the N1 of the alkylated guanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Structural features of pyrimidine.pyrimidine mismatches in the interior of oligonucleotide duplexes have been investigated by high resolution two-dimensional proton nuclear magnetic resonance (n.m.r.) spectroscopy. These studies were conducted on the self-complementary d(C-G-C-T-A-G-C-T-T-G-C-G) duplex (designated T.T 12-mer) and the self-complementary d(C-G-C-C-A-G-C-T-C-G-C-G) duplex (designated C.C 12-mer) containing T.T and C.C pairs located at identical positions four base-pairs from either end of the duplex. Proton n.m.r. studies on the T.T 12-mer duplex were undertaken in the neutral pH range, while studies on the C.C 12-mer duplex were recorded at acidic pH. The proton spectra narrowed considerably on lowering the pH below neutrality for the C.C 12-mer duplex. Two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) data sets have been recorded on the T.T 12-mer and C.C 12-mer duplexes in high salt H2O and D2O solution. The magnitude of the NOE crosspeaks and the directionality of the NOE connectivities demonstrate that both duplexes are right-handed with all bases, including those at the mismatch site, adopting an anti configuration about the glycosidic bond. The observed base and sugar proton chemical shifts suggest structural similarities for the trinucleotide segments centered about the T.T and C.C mismatches. A NOE is detected between the resolved imino protons of T4 and T9 at the mismatch site, consistent with formation of a stacked "wobble" T4(anti).T9(anti) pair in the T.T 12-mer duplex. A comparison of the imino proton chemical shift and NOE data suggests that the imino-carbonyl hydrogen bonds in the wobble T.T mismatch are weaker than the corresponding imino-carbonyl hydrogen bonds in the wobble G.T mismatch. The 4-amino protons of C4 and C9 at the mismatch site in the C.C 12-mer duplex do not exhibit the pattern of hydrogen-bonded and exposed protons separated by approximately 1.5 parts per million characteristic of cytidine amino protons involved in Watson-Crick G.C pairing. The experimental data are insufficient to differentiate between wobble C(anti).C+(anti) and other pairing possibilities for the mismatch in the C.C 12-mer duplex at acidic pH.  相似文献   

14.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

15.
The crystal structure of the self-complementary chimeric decamer duplex r(C)d(CGGCGCCG)r(G), with RNA base pairs at both termini, has been solved at 1.9 A resolution by the molecular replacement method and refined to an R value of 0.145 for 2,314 reflections. The C3'-endo sugar puckers of the terminal riboses apparently drive the entire chimeric duplex into an A-DNA conformation, in contrast to the B-DNA conformation adopted by the all-deoxy decamer of the same sequence. Five symmetry related duplexes encapsulate a spermine molecule which interacts with ten phosphate groups, both directly and through water molecules to form multiple ionic and hydrogen bonding interactions. The spermine interaction severely bends the duplexes by 31 degrees into the major groove at the fourth base pair G(4).C(17), jolts it and slides the 'base plate' into the minor groove. This base pair, together with the adjacent base pair in the top half and the corresponding pseudo two-fold related base pairs in the bottom half, form four minor groove base-paired multiples with the terminal base pairs of two neighboring duplexes.  相似文献   

16.
Molecular modelling studies resulted in the design of a variety of non-nucleotidic covalent linkers to bridge the 3'-end of the (+)-strand and the 5'-end of the (-)-strand in DNA duplexes. Three of these linkers were synthesized and used to prepare singly cross-linked duplexes d(GTGGAATTC)-linker-d(GAATTCCAC). Linker I is an assembly of a propylene-, a phosphate- and a second propylene-group and is thought to mimic the backbone of two nucleotides. Linkers II and III consist of five and six ethyleneglycol units, respectively. The melting temperatures of the cross-linked duplexes are 65 degrees C for I and 73 degrees C for II and III, as compared with 36 degrees C for the corresponding non-linked nonadeoxynucleotide duplex. The three cross-linked duplexes were structurally characterized by nuclear magnetic resonance spectroscopy. The 1H and 31P resonance assignments in the DNA stem were obtained using standard methods. For the resonance assignment of the linker protons, two-dimensional 1H-31P heteronuclear COSY and two-quantum-experiments were used. Distance geometry calculations with NOE-derived distance constraints were performed and the resulting structures were energy-minimized. In duplex I, the nucleotides flanking the propylene-phosphate-propylene-linker do not form a Watson-Crick base pair, whereas in duplexes II and III the entire DNA stem is in a B-type double helix conformation.  相似文献   

17.
Chen G  Kennedy SD  Qiao J  Krugh TR  Turner DH 《Biochemistry》2006,45(22):6889-6903
A previous NMR structure of the duplex 5'GGU GGA GGCU/PCCG AAG CCG5' revealed an unusually stable RNA internal loop with three consecutive sheared GA pairs. Here, we report NMR studies of two duplexes, 5'GGU GGA GGCU/PCCA AAG CCG5' (replacing the UG pair with a UA closing pair) and 5'GGU GAA GGCU/PCCG AAG CCG5' (replacing the middle GA pair with an AA pair). An unusually stable loop with three consecutive sheared GA pairs forms in the duplex 5'GGU GGA GGCU/PCCA AAG CCG5'. The structure contrasts with that reported for this loop in the crystal structure of the large ribosomal subunit of Deinococcus radiodurans [Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) Cell 107, 679-688]. The middle AA pair in the duplex 5'GGU GAA GGCU/PCCG AAG CCG5' rapidly exchanges orientations, resulting in alternative base stacking and pseudosymmetry with exclusively sheared pairs. The U GAA G/G AAG C internal loop is 2.1 kcal/mol less stable than the U GGA G/G AAG C internal loop at 37 degrees C. Structural, energetic, and dynamic consequences upon functional group substitutions within related 3 x 3 and 3 x 6 internal loops are also reported.  相似文献   

18.
All 1H-NMR resonances of d-[CATGGCCATG]2 and the 1:1 complex of lexitropsin 1 and the DNA were assigned by the NOE difference, COSY and NOESY methods. Addition of 1 causes the base and imino protons for the sequence 5'-CCAT to undergo the most marked drug-induced chemical shift changes, thereby indicating that 1 is located in this base pair sequence. NOEs confirmed the location and orientation of the drug in the 1:1 complex, with the amino terminus oriented to C(6). The van der Waals interaction between H12a,b of 1 and AH2(8) may be responsible for reading of the 3' A.T base pair in the 5'-CCAT sequence. Exchange NMR effects allow an estimate of approximately equal to 62 s-1 for the intramolecular "slide-swing" exchange of the lexitropsin between two equivalent binding sites with delta G = 58 +/- 5 kJ mol-1 at 301 degrees K.  相似文献   

19.
A high melting cis-[Pt(NH3)2[d(GpG)]]adduct of a decanucleotide duplex   总被引:2,自引:0,他引:2  
The [cis-Pt(NH3)2(d(GCCGGATCGC)-N7(4), N7(5))]-d(GCGATCCGGC) duplex has been prepared with Tm = 49 degrees C (vs 58 degrees C for the unplatinated form). NMR of the ten observable imino protons supports a kinked structure with intact base pairing of the duplex on the 3'-side of the d(GpG).cis-Pt chelate (relative to the platinated strand) The modification of the B-DNA type CD spectrum, due to the platinum chelate, is comparable to that observed for the platination (at a 0.05 Pt:base ratio) of the Micrococcus Lysodeikticus DNA (72% GC).  相似文献   

20.
Two oligodeoxyribonucleotides, d-CTTCTTTTTTATTTT, I(A), and d-ATTATTTTTTATTTT, II(A), where C is 5-methylcytosine and A is 8-oxoadenine, were prepared and their interactions with the duplex d-GAAGAAAAAAYAAAA/d-TTTTZTTTTTTCTTC, III.IV(Y.Z), were studied. Oligomers I(A) and II(A) each form triplexes with III.IV(G.C) at temperatures below 20 degrees C as shown by continuous variation experiments, melting experiments, and circular dichroism (CD) spectroscopy. The CD spectra of these triplexes are almost identical to those formed by I(C) and II(C), oligomers which contain cytosine in place of 8-oxoadenine. This suggests that the 8-oxoadenine-containing triplexes have conformations which are very similar to those of the cytosine-containing triplexes. The melting temperature (Tm) for dissociation of the third strand of triplex II.III.IV(A.G.C) is 22 degrees C at pH 7.0 and 8.0, whereas the Tm of the corresponding transition in triplex II.III.IV(C.G.C) decreases from 28 degrees C at pH 7.0 to 17 degrees C at pH 8.0. The pH dependence of the Tm in the latter triplex reflects the necessity of protonating the N-3 of cytosine in order for it to form two hydrogen bonds with G of the G.C base pair. It appears that the keto form of 8-oxoadenine can potentially form two hydrogen bonds with the N-7 and O-6 atoms of G of the G.C base pair, when the 8-oxoadenine is in the syn conformation and in contrast to cytosine does not require protonation of the base. Oligomer I(A) does not form triplexes with III.IV(Y.Z) when Y.Z is A.T or T.A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号