首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mononuclear cell production of cytokines that stimulate fibroblast prostaglandin (PG) elaboration is an important mechanism by which mononuclear cells regulate fibroblast function. However, the soluble factors mediating these PG-stimulatory effects are incompletely understood. We characterized the effects on PG production by confluent normal lung fibroblasts of recombinant interleukin 1 alpha (IL 1 alpha), interleukin 1 beta (IL 1 beta) and tumor necrosis factor (TNF), alone and in combination. All three cytokines stimulated fibroblast PG production with both IL 1 peptides being significantly more potent than TNF. In addition, TNF interacted in a synergistic fashion with both IL 1 peptides to augment fibroblast PGE elaboration further. The stimulatory effects of the cytokines were almost entirely caused by an increase in PGE2 production and were reversed when the cytokine(s) were removed. These changes in PG production could not be explained by alterations in cell number and were completely negated by specific anticytokine antibodies. Recombinant gamma interferon, although synergizing with TNF in regulating other cellular functions, did not interact with TNF to augment fibroblast PGE elaboration. In addition, the synergistic interaction of IL 1 and TNF did not extend to all biologic effects of IL 1 since TNF did not augment the ability of IL 1 to stimulate thymocyte proliferation.  相似文献   

2.
Normal peritoneal M phi of C3H/HeN mice were able to suppress lymphocyte proliferation in a dose-dependent fashion when added to Con A-pulsed spleen cell cultures. However, M phi-suppressive activity could be partially or completely reduced by in vitro pre-exposure to nonimmune IFN-alpha or immune recombinant IFN-gamma. For both IFN-alpha and IFN-gamma, reduction of M phi suppression was marginal at 10(1) U/ml and became highly significant at 10(2) to 10(3)/ml. The ability of IFN-alpha and IFN-gamma to modulate M phi suppression appears to be related to distinct mechanisms. In fact, impairment of M phi suppression by IFN-alpha occurred in parallel to the decrease of M phi capacity to produce PGE2 and the oxygen intermediate O2-, two molecules responsible for M phi-suppressive activity. In contrast, M phi exposed to IFN-gamma showed only impairment of PGE2 production, whereas O2- release was not significantly affected. Furthermore, at variance with IFN-alpha, IFN-gamma directly stimulated M phi to synthesize and release IL 1, a monokine known to promote lymphocyte proliferation.  相似文献   

3.
Long-term synovial fibroblast cultures were exposed to interleukin 1 (IL-1) or prostaglandin E2 (PGE2). The normally spindle-shaped fibroblasts changed to stellate-shaped cells, resembling the HLA-DR-positive, collagenase-producing cells which are normally seen only in primary cultures from enzyme-digested rheumatoid synovial tissue. However, the IL-1- or PGE2-induced fibroblasts were not HLA-DR-positive. This suggests that these cell populations represent originally different cell lines or that the expression of HLA-DR antigens is not induced by the agents used. For further characterization of these stellate cells, the location of fibronectin and type I collagen was studied by specific antibodies and the pericellular coat around fibroblasts was visualized by the erythrocyte exclusion method. Both IL-1 and PGE2 treatments destroyed the intercellular fibronectin network. Type I collagen was detected as intracellular granules. The stellate fibroblasts were usually full of these granules in contrast to intact fibroblasts in which the number of collagen fluorescence granules varied greatly. The pericellular coat known to be formed mainly by hyaluronic acid was similar around spindle and stellate-shaped fibroblasts. Rheumatoid arthritis-derived fibroblasts did not differ from their non-rheumatoid counterparts in any of the experiments. The effect of IL-1 and PGE2 on fibroblasts simulates the interaction between mononuclear cells and fibroblasts in synovial stroma and also potentially the interactions between different cell types in synovial lining.  相似文献   

4.
Prostaglandin production by intra-uterine human tissues has been investigated using a method of tissue superfusion. Tissues were obtained at elective Caesarean section and after spontaneous vaginal delivery. It was found that all the tissues studied (amnion, chorion, decidua and placenta) produced more prostaglandin E (PGE) and 13,14-dihydro-15-keto-prostaglandin F (PGFM — the major circulating metabolite of prostaglandin F) than prostaglandin F (PGF). Amnion produced significantly more PGE (but not PGF or PGFM) than any other tissue. Prostaglandin production by each tissue was similar whether it was taken at elective Caesarean section or after spontaneous vaginal delivery.  相似文献   

5.
Leukotrienes augment interleukin 1 production by human monocytes   总被引:18,自引:0,他引:18  
The effects of leukotrienes (LT) on production of interleukin 1 (IL 1) by human peripheral blood monocytes were examined. LTB4 enhanced IL 1 production by lipopolysaccharide (LPS)-stimulated monocytes twofold to threefold, and the most efficient concentrations of LTB4 were 10(-8) to 10(-7) M. LTD4 also enhanced IL 1 production, but to a lesser extent than LTB4. Adherence-purified, but otherwise unstimulated, human monocytes could also be induced to produce IL 1 in response to LTB4. Similarly, IL 1 production by monocytes stimulated with the known IL 1 inducers muramyl dipeptide, silica, or zymosan was also enhanced by LTB4. Inhibition of cyclooxygenase with use of indomethacin during IL 1 production by LPS-treated monocytes enhanced thymocyte response to IL 1, but LTB4 further enhanced IL 1 production when added to indomethacin-treated monocyte cultures. Neither LTB4 nor indomethacin had any direct effect on thymocyte proliferation. Optimal enhancement of IL 1 production occurred when LPS and LTB4 were present together at the initiation of the 24-hr monocyte culture. Significant enhancement was also observed, however, when monocyte cultures were either preincubated with LTB4 before addition of LPS or cultured with LPS alone for 3 hr before addition of LTB4. These results indicate that leukotrienes can modulate IL 1 production by human monocytes and suggest that they may play a role in IL 1-mediated functions of monocytes in inflammatory and immune reactions.  相似文献   

6.
15(S)-15-methyl-prostaglandin E1 and prostaglandin I2 rapidly and reversibly inhibit formyl-methionyl-leucyl-phenylalanine induced superoxide production by human neutrophils. In contrast, 15(S)-15-methyl-prostaglandin E1 and prostaglandin I2 did not alter the rate or the total amount of superoxide production by human neutrophils stimulated with either phorbol myristate acetate or arachidonic acid. These data suggest that the production of superoxide anion by human neutrophils may be mediated by at least two mechanisms, one regulated by prostaglandins and intracellular cyclic adenosine monophosphate levels and a second independent of prostaglandin modulation.  相似文献   

7.
8.
Recombinant human interleukin 1 alpha (rhIL-1 alpha) stimulates prostaglandin E2 and bone resorption in cultured forearm bones of fetal mouse in a dose-dependent manner: the minimal rhIL-1 alpha to elicit a significant bone resorption was 1.6 ng/ml (89 pM). The half maximal concentrations to elicit bone resorption and thymocyte proliferation were 3.3 ng/ml (183 pM) and 0.31 ng/ml (17 pM), respectively. The bone resorbing activity induced by IL-1 was partially inhibited by indomethacin and hydrocortisone, and completely inhibited by anti-IL 1-antibody. There was a good correlation between PGE2 production and bone resorption induced by IL-1 alpha. These results suggest that rhIL-1 alpha stimulates bone resorption at approximately 10 times the concentrations necessary for thymocyte proliferation and that PGE2 produced in the bone is at least in part involved in osteoclastic bone resorption.  相似文献   

9.
Interleukin 1 (IL-1) alters several potentially pathogenic endothelial cell (EC) functions. The authors report here that recombinant human IL-1 (rIL-1) alpha (0.1 to 10 ng/ml) or IL-1-beta (1 to 100 ng/ml) induce concentration- and time-dependent increases in IL-1-beta mRNA levels in EC derived from adult human saphenous vein. rIL-1 induced IL-1-alpha mRNA only in EC treated concomitantly with cycloheximide (2 micrograms/ml). IL-1-beta mRNA production began within 1 hr of exposure to rIL-1, peaked after 24 hr, and declined thereafter. Actinomycin D prevented the appearance of IL-1 mRNA in rIL-1-treated EC. rIL-1 also induced the release of biologically active IL-1 from EC, which was inhibited by cycloheximide (1 microgram/ml). When compared on the basis of their activity in the thymocyte costimulation assay, rIL-1-alpha and rIL-1-beta were equipotent as inducers of IL-1 production by EC. EC stimulated with rIL-1 produced prostaglandin E2, which inhibits IL-1 production by other cell types and also decreases the responsiveness of thymocytes to IL-1. When EC were exposed to rIL-1 in the presence of indomethacin (1 microgram/ml), which blocked prostaglandin E2 production, greater amounts of rIL-1-induced IL-1 release were detected, although the inhibitor did not affect IL-1-beta mRNA levels. IL-1-induced IL-1 production was unlikely to be caused by endotoxin contamination of tissue culture media or IL-1 preparations, because the lipopolysaccharide (LPS) antagonist polymyxin B (10 micrograms/ml) blocked LPS-induced IL-1 production by EC but did not affect IL-1 release in response to rIL-1-beta (100 ng/ml). The IL-1-inducing property of rIL-1-beta was heat-labile, whereas heated LPS stimulated EC IL-1 production. The source of IL-1 in our cultures was not monocyte/macrophages, as treatment of EC with monoclonal antibody to the monocyte antigen Mo2 under conditions that lysed adherent peripheral blood monocytes did not affect production of IL-1 by EC in response to LPS (1 microgram/ml) or rIL-1-beta (100 ng/ml). IL-1 elicits a coordinated program of altered endothelial function that increases adhesiveness for leukocytes and coagulability. IL-1-induced IL-1 gene expression in human adult EC could thus provide a positive feedback mechanism in the pathogenesis of vascular disease including atherosclerosis, vasculitis, and allograft rejection.  相似文献   

10.
11.
In this study we have examined the effects of recombinant cytokine preparations on the production of prostaglandin E2 (PGE2) by human articular chondrocytes in both chondrocyte monolayer and cartilage organ cultures. The cytokines chosen for this study included only those reported to be present in rheumatoid synovial fluids and which therefore could conceivably play a role in chondrocyte activation in inflammatory arthritis. Of the cytokines tested, interleukin-1 (IL-1; alpha and beta forms) consistently induced the highest levels of PGE2 production followed, to a lesser extent, by tumour necrosis factor (TNF; alpha and beta forms). The IL-1s were effective at concentrations 2-3 orders of magnitude less than the TNFs, with each cytokine demonstrating a dose-dependent increase in PGE2 synthesis for the two culture procedures. The increased PGE2 production by the chondrocytes exhibited a lag phase of 4-8 h following the addition of the IL-1 or TNF and was inhibited by actinomycin D and cycloheximide, indicating a requirement for de novo RNA and protein synthesis, respectively. Our results suggest that IL-1 may be the key cytokine involved in modulating chondrocyte PGE2 production in inflammatory arthritis; they further extend the list of human chondrocyte responses which are affected by both IL-1 and TNF.  相似文献   

12.
IL-1 stimulates PGE2 production in human fibroblasts by stimulating arachidonic acid (AA) mobilization and cyclooxygenase synthesis. Cyclooxygenase is the first enzyme in the pathway that converts AA to PGE2. To examine the role of protein kinase C (PKC) in IL-1-mediated PGE2 production, we treated cells with PMA, which stimulated PGE2 production suggesting a positive role for PKC activation in the regulation of PGE2 synthesis. Therefore, we tested the effect of sphingosine, a PKC inhibitor, on IL-1-induced PGE2 production. Alone, sphingosine had little effect on PGE2 production. However, when sphingosine was added with IL-1, or IL-1 was added to sphingosine-pretreated cells, PGE2 production increased severalfold, suggesting that the inhibition of PKC results in enhanced IL-1-mediated PGE2 production; structural analogs of sphingosine did not potentiate the IL-1 effect. In cells made deficient in PKC by prolonged exposure to PMA, IL-1-mediated PGE2 production was enhanced compared with normal cells, further suggesting that functional PKC is not required for, and may down-modulate, IL-1-mediated PGE2 production. These findings also suggest that PMA and IL-1 stimulate PGE2 synthesis via fundamentally different pathways. In separate studies on the effect of IL-1 on AA mobilization, we found that IL-1 induced an increase in phospholipase A2 (PLA2) activity and that cycloheximide blocked the increase, suggesting the requirement for new protein synthesis. We also found that the PLA2 activity increased as a result of IL-1 exposure was further stimulated by sphingosine. Thus, in addition to its primary effects on the cell, which are likely mediated via PKC, we present evidence suggesting that sphingosine may also play a role in potentiating an IL-1-induced PLA2 activity, resulting in increased availability of AA for conversion to PGE2.  相似文献   

13.
In order to identify factors which may regulate the functions of dermal fibroblasts, cell lysates and conditioned media of cultured human epidermal cells were tested on dermal fibroblasts for the stimulation of prostaglandin E2- and collagenase-production. Both prostaglandin E2- and collagenase-stimulating activities appeared during epidermal cell culture: after 2 d they were detected in the cell lysate, and after 4 d of culture they were found also in the conditioned media. Molecular sieving chromatography of epidermal cell lysates led to the detection of two main peaks showing concomitant prostaglandin E2- and collagenase-stimulating activities at Mr approximately equal to 18 000 and Mr approximately equal to 10 000. A single peak of concomitant prostaglandin E2- and collagenase-stimulating activities were seen at Mr approximately equal to 10 000 in the epidermal cell conditioned media. This suggests that the cell-associated concomitant prostaglandin E2- and collagenase-stimulating activities are processed from a common precursor molecule and released. Collagenase-stimulating activity without accompanying prostaglandin E2 was also detected in the range of Mr approximately equal to 30 000-45 000.  相似文献   

14.
Interleukins (IL-) 1 and 6 have been shown to represent accessory signals for T-cell activation. In the present study, we further examined the effects of both cytokines on accessory cell-depleted human T cells stimulated with phytohemagglutinin (PHA). The addition of IL-6 to the cultures resulted in T-cell proliferation; however, IL-1 was unable to support PHA-induced T-cell growth. The addition of IL-1 consistently induced a low level of IL-2 production and strongly enhanced T-cell proliferation in the presence of IL-6. Thus, the effect of IL-1 on T-cell growth becomes apparent only in the presence of IL-6. Blocking the IL-2-receptor (IL-2R) with the monoclonal antibodies anti-Tac and MikBêta 1 (directed to the alpha and bêta chains of the IL-2R, respectively) had no effect on PHA/IL-6-supported proliferation, but completely eliminated the growth-enhancing effect of IL-1. On the other hand, a neutralizing anti-IL-4-antiserum did not affect PHA/IL-6- or PHA/IL-6/IL-1-induced proliferation. Further experiments showed that IL-6 enhances T-cell responsiveness to IL-2, as evidenced by enhanced IL-2-induced proliferation. However, we could not find an effect of IL-6 on the expression of IL-2R as measured by staining with anti-Tac and with MikBêta 1 or by binding of (125I)-IL-2 to T cells. It can be concluded from these studies that IL-1 and IL-6 have different helper effects on PHA-induced T-cell activation. In the presence of PHA, IL-6 induces limited IL-2/IL-4-independent growth, and more importantly it renders T cells responsive to IL-2. IL-1 provides a signal leading to IL-2 production. The combination of IL-1 and IL-6 represents a synergistic helper signal, leading to an IL-2-dependent pathway of proliferation.  相似文献   

15.
Current evidence suggests that two forms of prostaglandin (PG) E synthase (PGES), cytosolic PGES and membrane-bound PGES (mPGES) -1, preferentially lie downstream of cyclooxygenase (COX) -1 and -2, respectively, in the PGE2 biosynthetic pathway. In this study, we examined the expression and functional aspects of the third PGES enzyme, mPGES-2, in mammalian cells and tissues. mPGES-2 was synthesized as a Golgi membrane-associated protein, and spontaneous cleavage of the N-terminal hydrophobic domain led to the formation of a truncated mature protein that was distributed in the cytosol with a trend to be enriched in the perinuclear region. In several cell lines, mPGES-2 promoted PGE2 production via both COX-1 and COX-2 in the immediate and delayed responses with modest COX-2 preference. In contrast to the marked inducibility of mPGES-1, mPGES-2 was constitutively expressed in various cells and tissues and was not increased appreciably during tissue inflammation or damage. Interestingly, a considerable elevation of mPGES-2 expression was observed in human colorectal cancer. Collectively, mPGES-2 is a unique PGES that can be coupled with both COXs and may play a role in the production of the PGE2 involved in both tissue homeostasis and disease.  相似文献   

16.
The objective of these studies was to examine the ability of phorbol myristic acetate (PMA), Fc fragments, and various forms of immune complexes to induce the production by human monocytes of factors stimulatory to chondrocytes or thymocytes. All of these materials were prepared free of detectable contamination with bacterial lipopolysaccharides (LPS) at the level of less than 0.1 ng/ml. Supernatants and lysates from stimulated human monocytes were assayed for their ability to induce collagenase production in cultured rabbit articular chondrocytes or to augment mitogen-induced proliferation of murine thymocytes. The activity detected by these assays exhibited an m.w. of approximately 15,000, and electrophoretic heterogeneity in the pH ranges of 5 to 5.5 and 6.5 to 7.0, characteristics of human interleukin 1 (IL 1) or IL 1-like factors. Monocytes cultured with 2 ng/ml LPS produced chondrocyte and thymocyte stimulatory factors. PMA, Fc fragments, and soluble, precipitated, particulate, or adherent immune complexes were inactive in stimulating the monocytes. However, complement fixation by precipitated immune complexes did generate activity capable of inducing monocytes to synthesize and secrete chondrocyte and thymocyte stimulatory factors. Adherent immune complexes and PMA were biologically active, as evidenced by induction of superoxide generation in the human monocytes. Supernatants from monocytes cultured on adherent immune complexes contained a factor inhibitory to chondrocyte and thymocyte responsiveness. This factor had a m.w. approximately 22,000 and appeared to inhibit specifically IL 1 stimulation, not interleukin 2 stimulation or cell proliferation. It was concluded that PMA, Fc fragments, and various forms of immune complexes in the absence of complement do not induce IL 1 production in human monocytes. However, complement fixation by immune complexes does lead to activation of monocytes to produce IL 1. Monocytes cultured on adherent immune complexes produce an IL 1 inhibitor.  相似文献   

17.
18.
Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.  相似文献   

19.
Regulation of immune cell activation in lymphocyte-bearing human tissues is a pivotal host function, and metabolites of arachidonic acid (prostaglandin E2 in particular) have been reported to serve this function at non-mucosal sites. However, it is unknown whether prostaglandin E2 is immunoregulatory for the large lymphocyte population in the lamina propria of intestine; whether low (nM) concentrations of prostaglandin E2 modulate immune responses occurring there; and whether adjacent inflammation per se abrogates prostaglandin E2's regulatory effects. To address these issues, intestine-derived lymphocytes and T hybridoma cells were assessed, T cell activation was monitored by release of independently quantitated lymphokines, and dose-response studies were performed over an 8-log prostaglandin E2concentration range. IL-3 release by normal intestinal lamina propria mononuclear cells was reduced (up to 78%) in a dose-dependent manner by prostaglandin E2, when present in as low a concentration as 10−10M. PGE2 also inhibited(by ≥ 60%) mucosal T lymphocytes' ability to destabilize the barrier function of human epithelial monolayers. Further, with an intestine-derived T lymphocyte hybridoma cell line, a prostaglandin E2 dose-dependent reduction in IL-3 and IL-2 (90 and 95%, respectively) was found; this was true for both mitogen- and antigen-driven T cell lymphokine release. Concomitant [3H] thymidine uptake studies suggested this was not due to a prostaglandin E2-induced reduction in T cell proliferation or viability. In contrast, cells from chronically inflamed intestinal mucosa were substantially less sensitive to prostaglandin E2, e.g., high concentrations (10−6 M) of prostaglandin E2 inhibited IL-3 release by only 41%. We conclude that prostaglandin E2 in nM concentrations is an important modulator of cytokine release from T lymphocytes derived from the gastrointestinal tract, and it may play a central role in regulation of lamina propria immunocyte populations residing there. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2), derived by enzymatic oxidation of cellular dihomogammalinolenic acid (DHLA) and arachidonic acid (AA), respectively, have diverse and, at times, distinct biological actions. It has been suggested that PGE1 specifically inhibits a variety of inflammatory processes, and, in light of the potential therapeutic benefit of PGE1 and its fatty acid precursor in inflammatory disorders, there is growing interest in the biochemical mechanisms which determine the balance between PGE1 and PGE2 synthesis. Metabolic studies in this area have been hampered by the difficulties in measuring the extremely small masses of these prostaglandins which are generated in cell culture systems. We studied the regulation of PGE1 versus PGE2 synthesis using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Because EFD-1 cells contain no endogenous AA or DHLA, we were able to replete the cells with AA and DHLA of known specific activities; thus, the mass of both cellular AA and DHLA, and synthesized PGE1 and PGE2, could be accurately determined. The major finding of this study is that production of PGE2 was highly favored over production of PGE1 due to preferential incorporation of AA versus DHLA into, and release from, the total cellular phospholipid pool. Further, we correlated the selective release of AA versus DHLA from total cellular phospholipids with the selective incorporation of AA versus DHLA into specific phospholipid pools. In addition, we showed that conversion of DHLA to AA by delta 5 desaturase was enhanced by increasing the cellular mass of n-6 fatty acids and by increasing the cell proliferative activity. Together, these results indicate that the relative abundance of PGE2 versus PGE1 in vivo is not merely a function of the relative abundance of AA versus DHLA in tissues, but also relates to markedly different cellular metabolism of these two fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号