首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have suggested that human umbilical cord blood (HUCB) may serve as a rich source of hematopoietic and nonhematopoietic stem cells and that conditions exist that can coax hematopoietic cells to express neural characteristics. In our laboratory, these cells were tested for several models of neurodegenerative diseases and spinal cord injuries. Through a series of transplantation studies we have begun to uncover the properties of HUCB-derived cells in neuropoietic regions of the neonatal (1) and aging rodent brain. The systematic application of phenotyping approaches to characterize survival, migratory potential and morphologic properties of the differentiated HUCB progeny within normal/unaffected brain will serve as a base for understanding the potential effect of these cells in the diseased brain.
Acknowledgements:  Supported in part by R01 6155039 (TZ). HUCB cells were obtained from Saneron CCEL Therapeutics, Inc. and BioWhittaker, Inc.  相似文献   

2.
Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP(+). We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP(+) treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.  相似文献   

3.
4.
The mechanisms leading to degeneration of melanized dopaminergic neurons in the brain stem, and particularly in the substantia nigra zona compacta (SNZC) in patients with Parkinson's disease (PD) are still unknown. Demonstration of increased iron Fe(III) in SNZC of PD brain has suggested that Fe-melanin interaction may contribute to oxidative neuronal damage. Energy dispersive X-ray electron microscopic analysis of the cellular distribution of trace elements revealed significant Fe-peaks, similar to those of a synthetic melanin-Fe(III) complex in intracytoplasmic electron-dense neuromelanin granules of SNZC neurons, with highest levels in a case of PD and Alzheimer's disease (AD). No Fe increase was found in Lewy bodies or in SN neurons of control specimens. The relevance of chemical reactions of dopamine (DA), 5-hydroxydopamine (5-OHDA), and 6-hydroxydopamine (6-OHDA) with Fe(III) and with dioxygen for the pathogenesis of PD was investigated. An initiating mechanism related to interaction between Fe and neuromelanin is suggested which results in accumulation of Fe(III) and a continuous production of cytotoxic species inducing a cascade of pathogenic reactions ultimately leading to neuronal death.  相似文献   

5.
Neuregulin-1 (Nrg1) is genetically linked to schizophrenia, a disease caused by neurodevelopmental imbalance in dopaminergic function. The Nrg1 receptor ErbB4 is abundantly expressed on midbrain dopaminergic neurons. Nrg1 has been shown to penetrate blood-brain barrier, and peripherally administered Nrg1 activates ErbB4 and leads to a persistent hyperdopaminergic state in neonatal mice. These data prompted us to study the effect of peripheral administration of Nrg1 in the context of Parkinson's disease, a neurodegenerative disorder affecting the dopaminergic system in the adult brain. We observed that systemic injections of the extracellular domain of Nrg1β(1) (Nrg1β(1)-ECD) increased dopamine levels in the substantia nigra and striatum of adult mice. Nrg1β(1)-ECD injections also significantly protected the mouse nigrostriatal dopaminergic system morphologically and functionally against 6-hydroxydopamine-induced toxicity in vivo. Moreover, Nrg1β(1)-ECD also protected human dopaminergic neurons in vitro against 6-hydroxydopamine. In conclusion, we have identified Nrg1β(1)-ECD as a neurotrophic factor for adult mouse and human midbrain dopaminergic neurons with peripheral administratability, warranting further investigation as therapeutic option for Parkinson's disease patients.  相似文献   

6.
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.  相似文献   

7.
PURPOSE OF REVIEW: Statins are the most used cholesterol-lowering agents worldwide. Earlier studies suggested that they may have preventive effects in Alzheimer's disease. However, prospective studies have questioned this hypothesis. RECENT FINDINGS: Statins regulate beta-amyloid metabolism and microglial activation. Pathologically, patients with Alzheimer's disease have more severe atherosclerosis in cerebral arteries than do controls. Such lesions may cause cerebral hypoperfusion, a risk factor for dementia and cognitive decline. Although most population-based studies have failed to show a beneficial effect of statins in Alzheimer's disease, two randomized controlled trials suggested that statins slow cognitive decline in mild to moderate Alzheimer's disease. SUMMARY: There is still some hope that statins reduce the incidence of Alzheimer's disease and slow its progression. Large-scale randomized controlled trials of simvastatin and atorvastatin for mild to moderate Alzheimer's disease are underway, which might provide more conclusive results than earlier studies.  相似文献   

8.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is rapidly metabolized to a 1-methyl-4-phenylpyridinium species (MPP+) in the squirrel monkey. After administration of toxic doses of MPTP, the concentration of MPP+ in the substantia nigra appears to increase during the first 72 hours, reaching the highest concentration of any central nervous system (CNS) tissue studied. In contrast, the concentration of this compound in other brain areas suggested time dependent elimination during the same period. Pretreatment of animals with the monoamine oxidase (MAO) inhibitor pargyline blocks both the neurotoxic action and the biotransformation of MPTP. In animals given pargyline and MPTP, initial MPTP levels are much higher in all brain regions than in those not receiving pargyline, but by 12 hours, MPTP levels had fallen rapidly in all regions except the substantia nigra and the eye. It may be that the selective toxicity of MPTP is related in some way to the accumulation of its oxidized metabolite in the substantia nigra.  相似文献   

9.
Molecular Biology Reports - Parkinson’s disease (PD) is a chronic neurodegenerative disease. Unfortunately, the effectiveness of anti-Parkinson treatments gradually diminishes owing to the...  相似文献   

10.
《Cytotherapy》2014,16(3):309-318
Background aimsThe protocols for differentiation of hepatocyte-like cells (HLCs) from mesenchymal stromal cells (MSCs) have been well established. Previous data have shown that MSCs and their derived HLCs were able to engraft injured liver and alleviate injuries induced by carbon tetrachloride. The goal of the current study was to determine the differences of MSCs and their derived HLCs in terms of therapeutic functions in liver diseases.MethodsAfter hepatic differentiation of umbilical cord–derived MSCs in vitro, we detected both MSC and HLC expressions of adhesion molecules and chemokine receptor CXCR4 by flow cytometry; immunosuppressive potential and hepatocyte growth factor expression were determined by means of enzyme-linked immunosorbent assay. We compared the therapeutic effect for fulminant hepatic failure in a mouse model.ResultsMSC-derived-HLCs expressed lower levels of hepatocyte growth factor, accompanied by impaired immunosuppression in comparison with MSCs. Furthermore, undifferentiated MSCs showed rescuing potentials superior to those in HLCs for the treatment of fulminant hepatic failure.ConclusionsAfter differentiation, HLCs lost several major properties in comparison with undifferentiated MSCs, which are beneficial for their application in liver diseases. Undifferentiated MSCs may be more appropriate than are HLCs for the treatment of liver diseases.  相似文献   

11.
Brain derived neurotrophic factor (BDNF) is a potent mediator of cell survival and differentiation and can reverse neuronal injury associated with Parkinson’s disease (PD). Tropomyosin receptor kinase B (trkB) is the high affinity receptor for BDNF. There are two major trkB isoforms, the full-length receptor (trkB.tk+) and the truncated receptor (trkB.t1), that mediate the diverse, region specific functions of BDNF. Both trkB isoforms are widely distributed throughout the brain, but the isoform specific distribution of trkB.t1 and trkB.tk+ to human neurons is not well characterized. Therefore, we report the regional and neuronal distribution of trkB.tk+ and trkB.t1 in the striatum and substantia nigra pars compacta (SNpc) of human autopsy tissues from control and PD cases. In both PD and control tissues, we found abundant, punctate distribution of trkB.tk+ and trkB.t1 proteins in striatum and SNpc neurons. In PD, trkB.tk+ is decreased in striatal neurites, increased in striatal somata, decreased in SNpc somata and dendrites, and increased in SNpc axons. TrkB.t1 is increased in striatal somata, decreased in striatal axons, and increased in SNpc distal dendrites. We believe changes in trkB isoform distribution and expression levels may be markers of pathology and affect the neuronal response to BDNF.  相似文献   

12.
It is assumed that one of the causes of the degeneration of dopaminergic neurons is the dysregulation of the vesicle cycle, which is ensured by a number of proteins including syntaxin I, synaptotagmin I, complexins I and II, and Rab5. It was shown that there is a compensatory increase in gene expression of proteins responsible for exocytosis at the preclinical stage of Parkinson’s disease (PD) in the in substantia nigra (SN) in mice. Conversely, in the model of the clinical stage of PD, the decreases of gene expression of proteins responsible for exocytosis, endocytosis, and neuronal survival, which may be among the triggers of motor dysfunctions.  相似文献   

13.
The advancements in our understanding of the inflammatory and immune mechanisms in rheumatoid arthritis (RA) have fuelled the development of targeted therapies that block cytokine networks and pathogenic immune cells, leading to a considerable improvement in the management of RA patients. Nonetheless, no therapy is curative and clinical remission does not necessarily correspond to non-progression of joint damage. Hence, the biomedical community has redirected scientific efforts and resources towards the investigation of other biological aspects of the disease, including the mechanisms driving tissue remodelling and repair. In this regard, stem cell research has attracted extraordinary attention, with the ultimate goal to develop interventions for the biological repair of damaged tissues in joint disorders, including RA. The recent evidence that mesenchymal stem cells (MSCs) with the ability to differentiate into cartilage are present in joint tissues raises an opportunity for therapeutic interventions via targeting intrinsic repair mechanisms. Under physiological conditions, MSCs in the joint are believed to contribute to the maintenance and repair of joint tissues. In RA, however, the repair function of MSCs appears to be repressed by the inflammatory milieu. In addition to being passive targets, MSCs could interact with the immune system and play an active role in the perpetuation of arthritis and progression of joint damage. Like MSCs, fibroblast-like synoviocytes (FLSs) are part of the stroma of the synovial membrane. During RA, FLSs undergo proliferation and contribute to the formation of the deleterious pannus, which mediates damage to articular cartilage and bone. Both FLSs and MSCs are contained within the mononuclear cell fraction in vitro, from which they can be culture expanded as plastic-adherent fibroblast-like cells. An important question to address relates to the relationship between MSCs and FLSs. MSCs and FLSs could be the same cell type with functional specialisation or represent different functional stages of the same stromal lineage. This review will discuss the roles of MSCs in RA and will address current knowledge of the relative identity between MSCs and FLSs. It will also examine the immunomodulatory properties of the MSCs and the potential to harness such properties for the treatment of RA.  相似文献   

14.
X-ray absorption near edge structure spectroscopy was applied in order to investigate differences in iron chemical state between the nerve cells of substantia nigra (SN) representing Parkinson’s disease (PD) and those of control cases. Autopsy samples were cut using a cryotome, and were not fixed and not embedded in paraffin. The comparison of the absorption spectra near the iron K-edge measured in melanized neurons from SN of PD and control samples did not show significant differences in iron oxidation state. Measurements of inorganic reference materials containing iron in the second and third oxidation states indicate that most of the iron in all the nerve cell bodies examined was oxidized and occurred as trivalent ferric iron (Fe3+).  相似文献   

15.
OBJECTIVE--To see whether a prepregnancy clinic for diabetic women can achieve tight glycaemic control in early pregnancy and so reduce the high incidence of major congenital malformation that occurs in the infants of these women. DESIGN--An analysis of diabetic control in early pregnancy including a record of severe hypoglycaemic episodes in relation to the occurrence of major congenital malformation among the infants. SETTING--A diabetic clinic and a combined diabetic and antenatal clinic of a teaching hospital. PATIENTS--143 Insulin dependent women attending a prepregnancy clinic and 96 insulin dependent women managed over the same period who had not received specific prepregnancy care. MAIN OUTCOME MEASURE--The incidence of major congenital malformation. RESULTS--Compared with the women who were not given specific prepregnancy care the group who attended the prepregnancy clinic had a lower haemoglobin AI concentration in the first trimester (8.4% v 10.5%), a higher incidence of hypoglycaemia in early pregnancy (38/143 women v 8/96), and fewer infants with congenital abnormalities (2/143 v 10/96; relative risk among women not given specific prepregnancy care 7.4 (95% confidence interval 1.7 to 33.2]. CONCLUSION--Tight control of the maternal blood glucose concentration in the early weeks of pregnancy can be achieved by the prepregnancy clinic approach and is associated with a highly significant reduction in the risk of serious congenital abnormalities in the offspring. Hypoglycaemic episodes do not seem to lead to fetal malformation even when they occur during the period of organogenesis.  相似文献   

16.
Wang H  Wu M  Liu Y 《Cellular immunology》2012,272(2):112-116
Numerous reports have shown that mesenchymal stem cells (MSCs) are implicated in immuno-regulation. Several factors expressed from MSCs, especially indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2), are of importance in immuno-regulation on immune cells. In current minireview, we provided evidences to support a novel notion that MSCs may be a major source of "safe signals" in the immune system to balance "dangerous signals" based on a well accepted theory of "danger model". Furthermore, MSCs are of lifecycle characterized by age-and diseased-related changes, such as decreased growth rate, increased senescence, and altered morphology. Thus, defected and abnormal MSCs are implicated in auto-immune diseases, such as systemic lupus erythematosus (SLE). Clinically, it is important to determine clinical benefits and sides effects of cell therapies using autologous self-MSCs or healthy allogeneic MSCs in treatment of autoimmune diseases.  相似文献   

17.
Oxidative stress is believed to induce dysfunction of the bone remodeling process and be associated with progressive loss of bone mass. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master controller during mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α could function as a cyto-protective e?ector in mesenchymal stem cells (MSCs) under oxidative stress conditions. In this study, diabetic serum was firstly used to treat MSCs to induce oxidative damage. The anti-oxidative protective effects of PGC-1α overexpression on MSCs, as well as MSCs’ osteogenesis and angiogenic regulation effects were investigated in vitro. Results showed that diabetic conditions induced significantly increase of intracellular oxidative damage and mitochondrial permeability transition pore (mPTP) opening activity, decrease of cellular viability, and osteogenic differentiation and pro-angiogenic regulation effects of MSCs. However, the diabetic conditions induced oxidative impair on MSCs were significantly alleviated via PGC-1α overexpression under diabetic conditions. Taken together, this study indicates the anti-oxidative treatment potential of PGC-1α regulation as a promising strategy to promote coupling pro-osteogenesis and pro-angiogenesis effects of MSCs.  相似文献   

18.
Background aimsThe therapeutic potential of human mesenchymal stromal cells (MSCs) has generated considerable interest in a wide variety of areas. MSC banking is feasible, but the optimal technique of cryopreservation remains to be determined.MethodsTo reduce dimethyl sulfoxide (DMSO) concentration in cryopreservation medium, DMSO was replaced with sucrose or trehalose. To increase cell survival and proliferation rates after thawing and to eliminate the need for fetal bovine serum (FBS), neuropeptides of the vasoactive intestinal peptide/glucose-dependent insulinotropic peptide/pituitary adenylate cyclase activating polypeptide family were added to the cryopreservation medium. Cell survival was analyzed by a trypan blue dye exclusion assay. Cell proliferation of cryopreserved MSCs was determined after 7 days of culture.ResultsNo significant differences in cell survival rates were detected between cryopreservation solutions with 5% and 10% DMSO, independently of the addition of trehalose or sucrose. Cell proliferation rates tended to be highest when MSCs were frozen in 5% DMSO + trehalose. FBS could be replaced by human albumin (HA) without loss in cell survival and proliferation potential. With FBS, the addition of neuropeptides could increase cell survival and proliferation rates. Without FBS or HA, cell survival and proliferation rates in the presence of neuropeptides were comparable to rates achieved with FBS or HA.ConclusionsClassic cryopreservation with 10% DMSO could be replaced by 5% DMSO + 30 mmol/L trehalose. FBS could be replaced by HA or neuropeptides without loss in cell survival and proliferation potential. The addition of neuropeptides in the cryopreservation medium containing FBS could increase the cell proliferation rate and consequently cellular output.  相似文献   

19.
Few scientific achievements have received such irresistible attention from scientists, clinicians, and the general public as the ability of human embryonic stem (hES) cells to differentiate into functional cell types for regenerative medicine. The most immediate benefit of neurons, cardiomyocytes, and insulin-secreting cells derived from hES cells, however, may reside in their application in drug discovery and toxicology. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. The development of cell-based assays using human cells that are physiological targets of drug activity will increase the robustness of target validation and efficacy, high-throughput screening (HTS), structure-activity relationship (SAR), and should introduce safer drugs into clinical trials and the marketplace. The pluripotency of embryonic stem cells, that is, the capacity to generate multiple cell types, is a novel path for the discovery of 'regenerative drugs', the pursuit of small molecules that promote tissue repair (neurogenesis, cardiogenesis) or proliferation of resident stem cells in different organs, thus creating drugs that work by a novel mechanism.  相似文献   

20.
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct‐limiting effects in numerous experimental and clinical studies. However, recent meta‐analyses of randomized clinical trials on MSC‐based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three‐dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non‐genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号