首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electropermeabilized preparation of frog retinal rod outer segments (ROS) has been developed to examine the light sensitivity and amplification of visual transduction reactions in a minimally disturbed environment. Electropermeabilized ROS are indistinguishable from whole and osmotically intact ROS in the light microscope and retain 3-fold more protein than mechanically disrupted ROS. They differ from mechanically fragmented ROS in several respects. Illumination results in more amplified activation of the GTP-binding protein transducin (Gt) than previously observed: bleaching as little as approximately 1 rhodopsin molecule (Rho*) in every 10 disks within a single ROS activates 37,000 molecules of Gt per Rho*, equivalent to 70% of the light-activatable Gt present on a single disk face. This amplification is maintained over approximately 1 decade of light intensity but drops sharply as disk faces begin to absorb a second photon. Lower amplification is observed in fragmented ROS and derives from the fact that physical disruption of ROS causes Gt to bind GTP and elute from the membrane, thus decreasing the amount remaining and available for light activation. Illumination of electropermeabilized ROS in the presence of GTP or of the nonhydrolyzable substrate guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) causes redistribution of Gt: an amount (approximately 20 mmol/mol Rho) equivalent to the amount of inhibitory gamma subunit of phosphodiesterase (PDE) remains internal and bound to nucleotide, and the remaining activated Gt diffuses out in a manner graded with light intensity. This suggests that PDE activation by Gt alpha may not require dissociation of Gt alpha bound to the gamma subunit of PDE in a form than can elute from ROS. Two further differences between electropermeabilized and mechanically disrupted ROS are noted: the addition of ATP to electropermeabilized ROS does not affect the light sensitivity or kinetics of the GTP binding reaction, and a specificity for light-induced GTP versus GDP binding is observed.  相似文献   

2.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

3.
The role of Mg2+ in the GTP hydrolytic cycle was investigated by using purified subunits (G alpha and G beta, gamma) of the GTP-binding protein isolated from Bufo marinus rod outer segments (ROS). Mg2+ markedly stimulated the rate of GTP and guanosine-5'-O-(3-thiotriphosphate) (GTP gamma-s) binding to G alpha. This effect was especially striking in the presence of very small quantities of illuminated ROS disc membranes. GTP hydrolysis could occur in the absence of Mg2+, and Mg2+ increased the rate of GTP hydrolysis only about 50%. These data indicate that Mg2+ plays a fundamental role in amplification of the photon signal by markedly stimulating the rate of formation of GTP X G alpha complexes by very small amounts of illuminated rhodopsin while producing only a modest increase in the rate of GTP hydrolysis. Following hydrolysis of GTP, GDP X G alpha could reassociate with illuminated or unilluminated ROS disc membranes in the presence or absence of Mg2+. In the absence of guanine nucleotides, release of GDP from G alpha bound to illuminated disc membranes was detected in the presence or absence of Mg2+. Moreover, Mg2+ did not affect the rate of GDP release from membrane-bound G alpha. Illumination of B. marinus crude ROS disc membrane preparations markedly reduced pertussis toxin-mediated ADP-ribosylation of a 39,000 Mr (G alpha) protein in the presence but not in the absence, of Mg2+. Moreover, extensive dialysis of illuminated (but not unilluminated) crude ROS disc membranes against a Mg2+-containing buffer caused a marked reduction in the subsequent ADP-ribosylation of G alpha, even when Mg2+ was not present during the ADP-ribosylation step. This reduction was reversed by the addition of GDP or a GDP analogue (but not GMP or hydrolysis-resistant GTP analogues) during the ADP-ribosylation step. Dialysis of crude ROS disc membrane preparations (illuminated or unilluminated) against a Mg2+ -free buffer did not reduce the subsequent ADP-ribosylation of G alpha. These data indicate that Mg2+, in the presence of photolysed rhodopsin, can stimulate the release of GDP from crude preparations of ROS disc membranes. Four lines of evidence suggest that G alpha and G beta, gamma have Mg2+-binding site(s). When stored at 4 degrees C, in the absence of glycerol, G beta, gamma was more stable in the absence than in the presence of Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The GTP-binding protein of Bufo marinus rod outer segments (ROS) is composed of 3 subunits: G alpha, 39,000; G beta, 36,000; and G gamma, approximately 6,500. A stepwise analysis of the GTP hydrolytic cycle (GTP binding, GTP hydrolysis, and GDP release) was facilitated by using purified subunits of the GTP-binding protein. When G alpha and G beta, gamma concentrations were held constant, the initial rate of guanosine-5'-O-(3-thiotriphosphate) (GTP gamma-s) binding to G alpha was dependent upon the amount of bleached rhodopsin present (as illuminated, urea-washed ROS disc membranes). When G alpha and the quantity of these membranes was held constant, the initial rate of GTP gamma-s binding to G alpha was markedly enhanced by increasing the amount of G beta, gamma. G beta preparations (free of G gamma) also stimulated the binding of GTP gamma-s to G alpha to the same extent as G beta, gamma preparations, suggesting that G gamma is not an essential component of the G beta, gamma-dependent stimulation of the rate of GTP gamma-s binding to G alpha. Nonlinear regression analysis revealed a single class of binding sites with an apparent stoichiometry of 1 mol of site/mol of G alpha under optimal binding conditions. Following GTP binding to G alpha, the GTP X G alpha complex dissociates from G beta, gamma which remains primarily bound to the ROS disc membranes. Moreover, while GTP remains in excess, the rates of GTP hydrolysis exhibited saturation in the presence of increasing amounts of G beta, gamma. Nonlinear regression analysis of these data argues against a direct role for G beta, gamma in the hydrolysis of GTP. Thus, both topologic and kinetic data support the concept that GTP hydrolysis is carried out by G alpha alone. After hydrolysis of GTP, the GDP X G alpha complex returned to the ROS disc membrane when G beta, gamma was present on the membrane surface, in the presence and absence of light. Without guanine nucleotides GDP release occurred in the presence of illuminated ROS disc membranes and G beta, gamma. Guanine nucleotides (GTP gamma-s approximately equal to GTP approximately equal to guanosine 5'-(beta, gamma-imido)triphosphate greater than GDP) could effectively displace GDP from G alpha under these conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In rod photoreceptor cells, the light response is triggered by an enzymatic cascade that causes cGMP levels to fall: excited rhodopsin (Rho*)----rod G-protein (transducin, Gt)----cGMP-phosphodiesterase (PDE). This results in the closure of plasma membrane channels that are gated by cGMP. PDE activation by Gt occurs when GDP bound to the alpha-subunit of Gt (Gt alpha) is exchanged with free GTP. The interaction of Gt alpha-GTP with the gamma-subunits of PDE releases their inhibitory action and causes cGMP hydrolysis. Inactivation is thought to be caused by subsequent hydrolysis of Gt alpha-GTP by an intrinsic Gt-GTPase activity. Here we report that there are two portions of Gt in frog rod outer segments (ROS) expressing different rates of GTP hydrolysis: 19.5 +/- 3 mmol of Gt/mol of Rho, equivalent to that amount which participates in PDE activation, hydrolyzing GTP at a rate of approximately 0.6 turnover/s ("fast") and the remaining Gt (80.5 +/- 3 mmol/mol Rho) hydrolyzing GTP at a rate of 0.058 +/- 0.009 turnover/s. Fast GTPase activity is abolished in the presence of cGMP. This effect occurs over the physiological range of cGMP concentration changes in ROS, half-saturating at approximately 2 microM and saturating at 5 microM cGMP. cGMP-dependent suppression of GTPase is specific for cGMP; cAMP in millimolar concentration does not affect GTPase, while the poorly hydrolyzable cGMP analogue, 8-bromo-cGMP, mimics the effect. GTPase regulation by cGMP is not affected by Ca2+ over the concentration range 5-500 nM, which spans the physiological changes in cytoplasmic Ca2+ in rod cells. We suggest that the fast cGMP-sensitive GTPase activity is a property of the Gt that activates PDE. In this model, cGMP serves not only as a messenger of excitation but also modulates GTPase activity, thereby mediating negative feedback regulation of the pathway via PDE turnoff: a light-dependent decrease in cGMP accelerates the hydrolysis of GTP bound to Gt, resulting in the rapid inactivation of PDE.  相似文献   

6.
In these studies we have investigated the role of the beta gamma T subunit complex in promoting the rhodopsin-stimulated guanine nucleotide exchange reaction (i.e. the activation event) of the alpha T subunit. The results of these studies demonstrate that although the beta gamma T subunit complex increases the association of the alpha T subunit with lipid vesicles that lack the photoreceptor, the beta gamma T complex is not necessary for the binding of alpha T to lipid vesicles containing rhodopsin, provided sufficient amounts of rhodopsin are present. The rhodopsin-promoted GDP/guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) exchange reaction, within the rhodopsin-alpha T complex, then results in the dissociation of the alpha TGTP gamma S species from the rhodopsin-containing phospholipid vesicles. A second line of evidence for the occurrence of rhodopsin/alpha T interactions, in the absence of beta gamma T, comes from phosphorylation studies using the beta 1 isoform of protein kinase C. The phosphorylation of the alpha T subunit by protein kinase C is inhibited by beta gamma T, both in the absence and in the presence of rhodopsin, but is enhanced by rhodopsin in the absence of beta gamma T. These rhodopsin-alpha T complexes also appear to be capable of undergoing a rhodopsin-stimulated guanine nucleotide exchange event. When the guanine nucleotide exchange is allowed to occur prior to the addition of protein kinase C, the phosphorylation of the alpha T subunit is inhibited. Although beta gamma T is not absolutely required for the rhodopsin/alpha T interaction, it appears to increase the apparent affinity of the alpha T subunit for rhodopsin, both when rhodopsin was inserted into phosphatidylcholine vesicles and when soluble lipid-free preparations of rhodopsin were used. This results in a significant kinetic advantage for the rhodopsin-stimulated guanine nucleotide exchange event, such that the addition of beta gamma T causes a 10-fold promotion of the rhodopsin-stimulation [35S]GTP gamma S binding to alpha T after 1 min but provides less than a 20% promotion of the rhodopsin-stimulated binding after 1 h. The ability of beta gamma T to increase the association of alpha T with the lipid vesicle surface does not appear to contribute significantly to the ability of rhodopsin to couple functionally to alpha T subunits, and there appears to be no requirement for beta gamma T in the alpha T activation event, once the rhodopsin-alpha T complex has formed.  相似文献   

7.
We have studied the effect of GDP and its analog guanyl-5'-yl thiophosphate (GDP beta S) on the interaction between rhodopsin and transducin (Gt). Stabilization of the light-induced active intermediate, metarhodopsin II (MII), by bound Gt (extra-MII effect) monitored the catalytic interaction between the proteins. Extra-MII can be completely abolished by GDP, with a half-suppression at 10 microM under the conditions (4 degrees C, pH 8, 7.5 nM photoactivated rhodopsin). The effect of GDP did not depend on divalent cations, in contrast to GTP-induced dissociation of the complex. The GDP analog GDP beta S did not affect extra-MII although it binds to the MII-Gt complex with only three times lower affinity (reversal of the GDP effect by GDP beta S). However, GDP beta S enhanced considerably the efficiency of synthetic rhodopsin peptide competition against the formation of extra-MII. GDP and GDP beta S slow the Gt activation rate (monitored by kinetic light scattering), with the same relative efficiencies. We therefore assume that GDP, GDP beta S, and GTP bind at the same site. We discuss a generalized induced fit mechanism, where MII induces opening of the Gt nucleotide site and release of GDP which in turn is obligatory to establish the MII-stabilizing rhodopsin-Gt three-loop interaction (K?nig, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A., and Hofmann, K.P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6878-6882). The GDP beta S/GDP difference is discussed in terms of bound GDP disturbing the interaction with two and GDP beta S with only one of the rhodopsin binding sites. Mechanistically, our results indicate a critical role of the beta-phosphate interaction with the nucleotide binding site in the GDP-induced transformation of Gt.  相似文献   

8.
Photolyzed rhodopsin acts in a catalytic manner to mediate the exchange of GTP for GDP bound to transducin. We have analyzed the steady-state kinetics of this activation process in order to determine the molecular mechanism of interactions between rhodopsin, transducin, and guanine nucleotides. Initial velocities (Vo) of the exchange reaction catalyzed by rhodopsin were measured for various transducin concentrations at several fixed levels of the GTP analog, [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The initial rate data analysis rigorously demonstrates that rhodopsin mediates the activation of transducin by a double-displacement catalytic mechanism. The Michaelis-Menten curves determined as a function of [transducin] reveal remarkable allosteric behavior; analysis of this data yields a Hill coefficient of 2. Lineweaver-Burk plots of Vo-1 versus [transducin]-1 display curvilinearity indicative of positive cooperativity and a series of parallel lines are generated by plotting Vo-1 as a function of [transducin]-2. The plots of Vo-1 versus [GTP gamma S]-1 show no evidence of allosterism and are a parallel series. Furthermore, the allosteric behavior observed in the activation of transducin is also witnessed in the rhodopsin-catalyzed guanine nucleotide exchange of the G protein's purified alpha subunit in the absence of the beta X gamma subunit complex. The latter observation implies that the molecular basis for allosterism in the activation process resides in the interactions between the photoreceptor and transducin's alpha subunit.  相似文献   

9.
cGMP-Specific phosphodiesterase (PDE6) is the key enzyme of the phototransduction system of vertebrate retinal rod outer segments (ROS). The properties of PDE in extracts prepared by solubilization of bovine ROS in a high concentration (0.5% w/v) of detergent n-nonyl-β-D-glucoside (NG) and following centrifugation (ROS-NG) have been studied. Basal PDE activity of the preparations was low, but it greatly (>50-fold) increased (up to ∼20 μmol cGMP hydrolyzed/min per mg rhodopsin (R)) in the presence of trypsin. In bleached GTPγS-containing preparations the specific PDE activity was dependent on ROS-NG concentration and was half-maximal at about 0.8 μM of ROS G protein transducin (Gt). In dark-adapted GTPγS-containing ROS-NG preparations bleaching of 0.2% of the rhodopsin resulted in half-maximal PDE activation. The same result was obtained when PDE in dark-adapted ROS-NG preparations was activated by addition of a highly purified bleached rhodopsin solubilized by 0.5% solution of NG. The results demonstrate that the presence of NG has no significant influence either on the properties of the main ROS phototrans-duction system elements (R, Gt and PDE) or on the interaction between photoactivated R and Gt and suggest that the detergent NG can be used for crystallization of the rhodopsin-transducin complex.  相似文献   

10.
Zona pellucida (ZP)-induced acrosomal exocytosis in mammalian spermatozoa is thought to be mediated by signal transduction cascades similar to those found in hormonally responsive cells. In order to characterize this process further, we have examined the role of GTP-binding regulatory proteins (G proteins) in coupling sperm-ZP interaction to intracellular second messenger systems in mouse sperm. An in vitro signal transduction assay was developed to assess ZP-G protein dynamics in sperm membrane preparations. Guanosine 5'-3-O-(thio)triphosphate (GTP gamma S), a poorly hydrolyzable analogue of GTP, bound to these membranes in a specific and concentration-dependent fashion which reached saturation at 100 nM. Incubation of the membrane preparations with heat-solubilized ZP resulted in a significant increase in specific GTP gamma S binding in a concentration-dependent fashion with a half-maximal response at 1.25-2 ZP/microliters. Solubilized ZP also caused a significant increase in high affinity GTPase activity in the membranes over basal levels. Mastoparan increased specific GTP gamma S binding to the sperm membranes and stimulated high-affinity membrane GTPase activity to levels consistently greater than that seen with the solubilized ZP. Mastoparan, together with solubilized ZP, gave the same level of stimulation of GTP gamma S binding as mastoparan alone. Pertussis toxin completely inhibited the ZP-stimulated GTP gamma S binding, but only decreased mastoparan-stimulated GTP gamma S binding by 70-80%. Purified ZP3, the ZP component which possesses quantitatively all of the acrosomal exocytosis-inducing activity of the intact ZP, stimulated GTP gamma S binding to the same level as solubilized ZP; ZP1 and ZP2 did not stimulate GTP gamma S binding. ZP from fertilized eggs (ZPf), which does not possess acrosome reaction-inducing activity, also failed to stimulate GTP gamma S binding to sperm membranes. These data demonstrate the direct activation of a Gi protein in sperm membrane preparations in response to the ZP glycoprotein, ZP3, that induces the acrosome reaction. These data imply that Gi protein activation is an early event in the signal sequence leading to sperm acrosomal exocytosis.  相似文献   

11.
Membranes of myeloid differentiated human leukemia (HL 60) cells contain receptors for the chemotactic peptide, fMet-Leu-Phe (fMet, N-formylmethionine), interacting with pertussis-toxin-sensitive guanine-nucleotide-binding proteins (G proteins). Agonist activation of the receptors increases binding of the GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins, at 30 degrees C only in the presence of exogenous GDP. In contrast, at 0 degrees C fMet-Leu-Phe stimulated binding of GTP[S] to G proteins maximally without addition of GDP. Under conditions resulting in marked degradation of membrane-bound GDP, control binding of GTP[S] measured at 0 degrees C was significantly increased, whereas the extent of agonist-stimulated binding was reduced. Furthermore, there was a rapid spontaneous release of membrane-bound GDP at 30 degrees C, but not at 0 degrees C. The data suggest that in intact membranes of HL 60 cells G proteins are initially in a GDP-liganded form, which state allows the receptor-induced exchange of bound GDP for GTP[S] at low temperature. In contrast, at or near physiological temperature, bound GDP is rapidly released (and degraded), resulting in unligated G proteins to which GTP[S] will bind independently of agonist-activated receptors.  相似文献   

12.
Purified guanine nucleotide-binding regulatory proteins, as either the oligomers or the isolated nucleotide-binding alpha subunits, display anomalous kinetics of nucleotide binding. This is due to the presence of tightly bound GDP in these preparations. The dissociation of bound GDP is the rate-limiting step for nucleotide binding. GDP can be removed by chromatography in the presence of 1 M (NH4)2SO4 and 20% glycerol, which yields preparations of G proteins that contain less than 0.1 mol of GDP/mol of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-binding site. When the GDP is removed, the binding of GTP gamma S displays kinetics consistent with a bimolecular reaction.  相似文献   

13.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

15.
Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the two diastereoisomers of guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) were prepared enzymatically, and their interactions with tubulin and microtubule-associated proteins (MAPs) in 0.1 M 2-(N-morpholino)ethanesulfonate, 0.5 mM MgCl2 were examined. GTP gamma S did not support microtubule assembly but instead inhibited the reaction. This analog was 1.5-2 times more potent than GDP in inhibiting both tubulin polymerization and GTP hydrolysis under conditions in which these reactions were dependent on MAPs. In contrast to the analog's inhibitory effects on polymerization and hydrolysis, however, radiolabeled GTP gamma S was only feebly bound by purified tubulin at 0 degrees C relative to the binding of GDP and GTP. There was a marked increase in the amount of GTP gamma S bound when the reaction temperature was raised to 37 degrees C or when MAPs were included in the reaction mixture. Only when both MAPs were present and the higher reaction temperature was used did the binding of GTP gamma S exceed that of GDP. Since substitution of sulfur for oxygen in a molecule should decrease its hydrophilic properties, these findings suggest that the exchangeable nucleotide binding site of tubulin becomes more hydrophobic at higher temperatures and in the presence of MAPs. The two isomers of GTP beta S were able to support MAP-dependent polymerization, although a 50-100-fold higher concentration of the analogs as compared to GTP was required. Neither isomer of GTP beta S had a significant inhibitory effect on GTP hydrolysis dependent on tubulin + MAPs.  相似文献   

16.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

17.
The 23.5-kDa Sec4 protein is required for vesicular transport between the Golgi apparatus and the plasma membrane in Saccharomyces cerevisiae. In order to analyze its biochemical properties, we have purified the soluble pool of the wild-type protein from an overproducing yeast strain. At 30 degrees C, Sec4p bound [35S] guanosine 5'-O-(thiotriphosphate) (GTP gamma S) with a rate of 0.18 min-1 in a reaction requiring micromolar concentration of free magnesium ions. The protein had high affinity for guanine nucleotides with Kd values for GTP gamma S and GTP of 3.7 nM and 3.5 nM, respectively, and that for GDP of 77 nM. The dissociation of [3H] GDP from Sec4p occurred with a rate of 0.21 min-1 suggesting that the association of GTP gamma S was the result of exchange for prebound GDP. The release of GTP from Sec4p was slow and correlated with a low inherent GTPase activity of 0.0012 min-1. By analogy with other classes of GTP binding proteins, both the nucleotide exchange and hydrolysis activities of Sec4p may be modulated in vivo to facilitate its role in the regulation of intercompartmental membrane traffic.  相似文献   

18.
G Yamanaka  F Eckstein  L Stryer 《Biochemistry》1986,25(20):6149-6153
The interaction of six hydrolysis-resistant analogues of GTP with transducin, the signal-coupling protein in vertebrate photoreceptors, was investigated. GppNHp and GppCH2p differ from GTP at the bridging position between the beta- and gamma-phosphate groups. The other analogues studied (GTP gamma F, GTP gamma OMe, GTP gamma OPh, and GTP gamma S) differ from GTP in containing a substituent on the gamma-phosphorus atom or at a nonbridging gamma-oxygen atom. Competition binding experiments were carried out by adding an analogue, [alpha-32P]GTP, and a catalytic amount of photoexcited rhodopsin (R) to transducin and measuring the amount of bound [gamma-32P]GTP. The order of effectiveness of these analogues in binding to transducin was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh greater than GTP gamma OMe greater than GppCH2p greater than GTP gamma F A second assay measured the effectiveness of GTP gamma S, GppNHp, and GppCH2p in eluting transducin from disc membranes containing R. The basis of this assay is that transducin is released from disc membranes when it is activated to the GTP form. The relative potency of these three analogues in converting transducin from a membrane-bound to a soluble form was 1000, 75, and 1, respectively. Stimulation of cGMP phosphodiesterase activity served as a third criterion of the interaction of these analogues with transducin. The order of effectiveness of these analogues in promoting the transducin-mediated activation of the phosphodiesterase was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh much greater than GppCH2p greater than GTP gamma OMe greater than GTP gamma F GTP gamma S was more than a 1000 times as potent as GTP gamma F in activating the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Morizumi T  Imai H  Shichida Y 《Biochemistry》2005,44(29):9936-9943
Rhodopsin is a photoreceptive protein that is present in rod photoreceptor cells, inducing a GDP-GTP exchange reaction on the retinal G-protein transducin (Gt) upon light absorption. This exchange reaction proceeds through at least three steps, which include the binding of photoactivated rhodopsin to GDP-bound Gt, the dissociation of GDP from the rhodopsin-Gt complex, and the binding of GTP to the nucleotide-unbound Gt. These steps have been thought to occur after the formation of the rhodopsin intermediate, meta-II; however, the extra formation of meta-II, which reflects the formation of a complex with Gt, was inhibited in the presence of excess GDP. Here, we use a newly developed CCD spectrophotometer to show that a meta-II precursor, meta-Ib, which has an absorption maximum at visible region, can bind to Gt in its GDP-bound form in urea-washed bovine rod outer segment membranes. The affinity of meta-Ib for GDP-bound Gt is about two times less than that of meta-II for GDP-unbound Gt, indicating that the extra formation of meta-II is observed at equilibrium even in the presence of the meta-Ib-Gt complex. This is the first identification of a complex that includes the GDP-bound form of G protein. Our results strongly suggest that the protein conformational change of the rhodopsin intermediate after binding to Gt is important for the induction of the nucleotide release from the alpha-subunit of Gt.  相似文献   

20.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号