首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The morphology of placentas from trisomy 16 and trisomy 19 mouse conceptuses aged 12 to 18 gestational days was studied at the light microscopic level. Comparisons were made with placentas from normal littermate animals. Trisomy 16 placentas showed marked changes from normal: 1) the junctional zone showed little indication of normal morphologic differentiation throughout gestation; 2) clusters of germinal trophoblast cells persisted in the labyrinth throughout gestation, whereas these cells disappeared by gestational day 16 in the normal littermate placentas; 3) the labyrinth was reduced in size in the trisomic placentas, and the differentiation of the interhemal membranes was delayed. The size of the labyrinths from trisomy 19 placentas appeared to be decreased, but otherwise the placentas appeared to have normal morphology. These observations and others from the literature show that placental development is affected by the presence of a trisomic genome, and that different trisomies influence the development of the placenta differently. For trisomy 16, we propose that the striking changes of the junctional zone may be associated with the trisomy 16-related gene dosage effect for alpha- and beta-interferon cell surface receptors. Because of the homology for this and other genes on mouse chromosome 16 with genes on human chromosome 21, findings related to the altered development of the trisomy 16 mouse may be relevant to understanding some of the phenotypic variations associated with human trisomy 21, the Down syndrome.  相似文献   

2.
Maternal undernutrition (MUN) during pregnancy results in intrauterine growth-restricted (IUGR) fetuses and small placentas. Although reduced fetal nutrient supply has been presumed to be etiologic in IUGR, MUN-induced placental dysfunction may occur prior to detectable fetal growth restriction. Placental growth impairment may result from apoptosis signaled by mitochondria in response to reduced energy substrate. Therefore, we sought to determine the presence of mitochondrial-induced apoptosis under MUN and ad libitum diet (AdLib) pregnancies. Pregnant rats were fed an AdLib or a 50% MUN diet from embryonic day 10 (E10) to E20. At E20, fetuses and placentas from proximal- and mid-horns (extremes of nutrient/oxygen supply) were collected. Right-horn placentas were used to quantify apoptosis. Corresponding left-horn placentas were separated into basal (hormone production) and labyrinth (feto-maternal exchange) zones, and protein expression of the mitochondrial pathway was determined. Our results show that the MUN placentas had significantly increased apoptosis, with lower expression of cytosolic and mitochondrial anti-apoptotic Bcl2 and Bcl-X(L), and significantly higher expression of pro-apoptotic Bax and Bak especially in the labyrinth zone. This was paralleled by higher coimmunostaining with the mitochondrial marker manganese superoxide dismutase (MnSOD), indicating transition of pro-apoptotic factors to the mitochondrial membrane. Also, cytosolic cytochrome c and activated caspases-9 and -3 were significantly higher in all MUN. Conversely, peroxisome proliferator-activator receptor-γ (PPARγ), a member of the nuclear receptor family with anti-apoptotic properties, was significantly downregulated in both zones and horns. Our results suggest that MUN during rat pregnancy enhances mitochondria-dependent apoptosis in the placenta, probably due to the downregulation of PPARγ expression.  相似文献   

3.
4.
Uniparental disomy for chromosome 16 in humans.   总被引:16,自引:6,他引:10  
The association between chromosomal mosaicism observed on chorionic villus sampling (CVS) and poor pregnancy outcome has been well documented. CVS mosaicism usually represents abnormal cell lines confined to the placenta and often involves chromosomal trisomy. Such confined placental mosaicism (CPM) may occur when there is complete dichotomy between a trisomic karyotype in the placenta and a normal diploid fetus or when both diploid and trisomic components are present within the placenta. Gestations involving pure or significant trisomy in placental lineages associated with a diploid fetal karyotype probably result from a trisomic zygote which has lost one copy of the trisomic chromosome in the embryonic progenitor cells during cleavage. Uniparental disomy would be expected to occur in one-third of such cases. Trisomy of chromosome 7, 9, 15, or 16 is most common among the gestations with these dichotomic CPMs. Nine pregnancies with trisomy 16 confined to the placenta were prenatally diagnosed. Pregnancy outcome, levels of trisomic cells in term placentas, and fetal uniparental disomy were studied. Intrauterine growth retardation (IUGR), low birthweight, or fetal death was observed in six of these pregnancies and correlated with high levels of trisomic cells in the term placentas. Four of the five cases of IUGR or fetal death showed fetal uniparental disomy for chromosome 16. One of the infants with maternal uniparental disomy 16 had a significant malformation (imperforate anus). All infants with normal intrauterine growth showed term placentas with low levels of trisomic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The results presented here indicate that recombinant murine interferon-gamma can cause a dramatic differential induction of two distinct class I MHC molecules. Thus, IFN-gamma treatment of the murine leukemia virus (MuLV)-induced AKR SL3 tumor, a cell line that normally expresses moderate levels of class I MHC antigens, resulted in a large increase in H-2Dk expression, but no change or a slight decrease in H-2Kk expression as measured by cytofluorography. Explanations of the selective enhancement of Dk expression based on increased Fc receptor display or differential kinetics of induction were ruled out. The phenomenon was observed over a wide range of doses of IFN-gamma and with two different monoclonal antibodies to Kk, the latter finding making it unlikely that an altered form of the Kk molecule was induced. The same differential induction of the Dk antigen was observed for the LBRM.5A4 tumor cell line. Because LBRM.5A4 is also MuLV+ but of congenic B10.BR (H-2k) origin, these results were consistent with the possibility that such differential induction was associated with the H-2k haplotype and/or MuLV. The implications of these results, as a possible mechanism of tumor cell escape from an immune surveillance system monitored by class I MHC-restricted T cells and as a useful model system to dissect the mechanism of IFN-gamma induction of class I MHC antigens, are discussed.  相似文献   

6.
A chimeric H-2Kd/Kk gene, called pC31, contains the extracellular alpha 1 domain of Kd origin whereas the rest of the molecule is of Kk origin. Disruption of the syngeneic alpha 1-alpha 2 structure results in a total abrogation of the function of the C31 protein as a restriction element for H-2Kd and Kk restricted T cells during virus infection. In an attempt to obtain information on the functional polymorphism of MHC class I antigens as restriction elements, we have introduced the pC31 gene into the germ line of C3H/He mice (H-2k). The pC31 gene was transcribed in all tissues examined and the expression pattern paralleled the endogenous H-2Kk gene. However, the mRNA for the transgene was approximately 10-times more abundant, which was reflected in an elevated expression of the C31 protein in transgenic splenocytes. Most of the C31 antigen was found intracellularly. The C31 antigen could condition transgenic cytotoxic T lymphocytes in a specific manner during influenza A virus infection and functioned as the restricting element during T cell lysis of the infected cells. These results suggest that entire exons may be exchanged between MHC class I genes and that this exchange can generate novel and functional restriction elements.  相似文献   

7.
These studies examine changes in placental growth and the abundance of progesterone receptors (Rp) in whole placentas between Days 9 and 22 of pregnancy. In addition, some placentas were dissected into decidual basalis, junctional zone, and labyrinth zone before assay of Rp. High affinity binding of 3H-progesterone to Rp was detected at all stages of pregnancy in whole placentas and in decidua basalis and the junctional zone of the placenta. Cytosolic and nuclear receptors exhibited similar affinity for progesterone in both tissues (Kd = 3.1 +/- 0.3 and 4.4 +/- 0.7 nM, respectively). Receptor binding in whole placentas increased from Day 9 to Day 12 (p less than 0.05), declined markedly at Day 16 (p less than 0.05), and returned to former levels on Days 19 and 22 (p less than 0.05). Decidua basalis contained 84% of total Rp on Day 14, which declined to 67% on Day 17 (p less than 0.05). The junctional zone contained 16% of total Rp on Day 14 and 33% on Day 17. After Day 17, junctional zone was the only source of Rp. The decline in Rp on Day 16 followed regression of decidua basalis; recovery of Rp thereafter was due to growth of the junctional zone. The labyrinth zone did not express significant amounts of Rp at any stage despite a 4-fold increase in growth in late pregnancy. Although the biologic role of the Rp in maintenance of pregnancy is poorly understood, these studies suggest that the maternal decidua basalis and fetal junctional zone are targets of progesterone action.  相似文献   

8.
We have produced transgenic mice using the mouse placental lactogen type II promoter to force and restrict the expression of the mouse major histocompatibility complex (MHC) class I molecule, H-2K(b), to the placenta. We show that the transgenic MHC antigen H-2K(b) is expressed exclusively in trophoblast giant cells from Day 10.5 until the end of gestation. This expression affects neither the fetal development nor the maternal tolerance to the fetus in histoincompatible mothers. We have used the 3.83 B cell receptor (BcR) transgenic mouse line to follow the fate of H-2K(b)-specific maternal B cells in mothers bearing H-2K(b)-positive placentas. Our results suggest that transgenic H-2K(b) molecules on trophoblast giant cells are recognized by 3.83 BcR-transgenic B cells in the bone marrow of pregnant females. This antigen recognition triggers the deletion of a bone marrow B cell subpopulation, including immature and transitional B cells. Their percentage decreases during the second half of gestation and is down to 8% on Day 17.5, compared to 22% in the (3.83 Tg female x Fvb) control group. This deletion might contribute to the process of maternal tolerance of the conceptus.  相似文献   

9.
Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44–47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT.  相似文献   

10.
The effect of systemic immunologic stimulation on renal expression of the H-2K (class I) and Ia (class II) antigens of the mouse major histocompatibility complex was explored. We previously reported that graft-vs-host (GvH) disease in mice caused an increase in host renal Ia expression. In the present experiments, we demonstrated that Kk antigen expression also increased during GvH. Other immune stimuli (allogeneic tumor grafts or injections of allogeneic spleen cells) caused increased renal Ia (and, where studied, Kk) expression in the epithelium of some renal tubules, as demonstrated by indirect immunofluorescence (IIF) or immunoperoxidase (IIP) staining. The normal interstitial Ia staining was frequently diminished in the kidneys of mice given these stimuli. At least in the case of allogeneic tumor grafts, the changes in renal Ia and H-2K were dependent on host T cells, in that no similar change appeared in nude (nu/nu) mice bearing allogeneic tumor grafts. By histochemical techniques, most of the change was in proximal tubules. In semiquantitative absorption, the total renal Ia was usually increased (two- to 20-fold) in parallel with the IIF or IIP changes. Serial studies revealed that MHC product induction was frequently transient and was not associated with detectable histologic abnormalities. In cultured renal cells, increased Iak and Kk could be demonstrated by IIF after 4 days of culture in supernatants of lymphocytes stimulated with concanavalin A: the activity in these supernatants was probably not interleukin 2, but might have been IFN-gamma, because IFN-gamma also induced this change. We conclude that systemic immunologic stimuli alter MHC product expression in renal tubule epithelium and that this effect can be stimulated in vitro by supernatants of stimulated lymphocytes.  相似文献   

11.
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a membrane-associated Kunitz-type serine protease inhibitor that regulates cell surface and extracellular serine proteases involved in tissue remodeling and tumorigenesis, such as HGFA, matriptase, prostasin and hepsin. We generated HAI-1 deficient mice, which died in utero due to placental defects. The HAI-1(-/-) placental labyrinth exhibited a complete failure of vascularization and a compact morphology of the trophoblast layer. Immunofluorescent staining of collagen IV and laminin and electron microscopy analysis revealed that this aberrant labyrinth architecture was associated with disrupted basement membranes located at the interface of chorionic trophoblasts and allantoic mesoderm. Unlike the placental labyrinth, basement membranes and vasculogenesis were normal in embryo and yolk sac. Therefore, basement membrane defects appear to be the underlying cause for the greatly impaired vascularization and trophoblast branching in HAI-1(-/-) placentas. In wild-type placentas, the expression of matriptase and prostasin co-localized with their physiological inhibitor HAI-1 to the labyrinthine trophoblast cells in proximity to basement membranes. In HAI-1(-/-) placentas, both the localization and expression of the two proteases remained unchanged, implying uncontrolled proteolytic activities of the two enzymes. Our study demonstrates the important role of HAI-1 in maintaining the integrity of basement membrane most likely by regulating extracellular proteolytic activities during placental development.  相似文献   

12.
By using a calibrated dual laser cell sorter and monoclonal antibodies directly conjugated to fluorescein and rhodamine and specific for H-2Kk and HLA class I antigens, quantitative cytofluorometric analysis was performed on individual HLA-A3 or -CW3 transformed mouse L cells (H-2k). More than 80% of these cells expressed both HLA class I and H-2Kk molecules. Their respective levels of expression were calculated: a mean of 4 X 10(5) HLA class I and 2.3 X 10(5) H-2Kk molecules per single cell. Quantitative comparison with control untransformed L cells and double fluorescence contour maps showed a positive correlation between the levels of expression of HLA class I and H-2Kk molecules suggesting that expression of foreign class I molecules did not occur at the expense of the endogenous H-2k product.  相似文献   

13.
Epoxiconazole (CAS‐No. 133855‐98‐8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7–18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole‐mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose‐dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. Birth Defects Res (Part B) 98:208–221, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Kgv cells do not constitutively express class I mRNA or protein. Interferon (IFN)-gamma, but not IFN-alpha/beta, induces H-2Dk expression. IFN does not induce H-2Kk expression. We examined constitutive and IFN-inducible class I expression on Kgv cells stably transfected with genomic clones of H-2Kk or H-2Dk and on somatic cell hybrid lines constructed between Kgv cells and constitutively class I-positive cells of a distinguishable H-2 haplotype. Our results suggest that both the lack of constitutive class I expression and the inability of IFN-alpha/beta to induce class I expression on Kgv cells are primarily due to cis-regulatory mechanisms. However, stable introduction of the H-2Dk gene into Kgv cells conferred IFN-gamma inducibility upon the silent endogenous H-2Kk gene. Therefore, the failure of IFN-gamma to induce H-2Kk expression on Kgv cells is due, at least in part, to a trans-regulatory mechanism.  相似文献   

15.
The importance of placental circulation is exemplified by the correlation of placental size and blood flow with fetal weight and survival during normal and compromised human pregnancies in such conditions as preeclampsia and intrauterine growth restriction (IUGR). Using noninvasive magnetic resonance imaging, we evaluated the role of PKBalpha/AKT1, a major mediator of angiogenesis, on placental vascular function. PKBalpha/AKT1 deficiency reduced maternal blood volume fraction without affecting the integrity of the fetomaternal blood barrier. In addition to angiogenesis, PKBalpha/AKT1 regulates additional processes related to survival and growth. In accordance with reports in adult mice, we demonstrated a role for PKBalpha/AKT1 in regulating chondrocyte organization in fetal long bones. Using tetraploid complementation experiments with PKBalpha/AKT1-expressing placentas, we found that although placental PKBalpha/AKT1 restored fetal survival, fetal PKBalpha/AKT1 regulated fetal size, because tetraploid complementation did not prevent intrauterine growth retardation. Histological examination of rescued fetuses showed reduced liver blood vessel and renal glomeruli capillary density in PKBalpha/Akt1 null fetuses, both of which were restored by tetraploid complementation. However, bone development was still impaired in tetraploid-rescued PKBalpha/Akt1 null fetuses. Although PKBalpha/AKT1-expressing placentas restored chondrocyte cell number in the hypertrophic layer of humeri, fetal PKBalpha/AKT1 was found to be necessary for chondrocyte columnar organization. Remarkably, a dose-dependent phenotype was exhibited for PKBalpha/AKT1 when examining PKBalpha/Akt1 heterozygous fetuses as well as those complemented by tetraploid placentas. The differential role of PKBalpha/AKT1 on mouse fetal survival and growth may shed light on its roles in human IUGR.  相似文献   

16.
Placental attachment and the ultrastructure of the decidua and placental labyrinth have been studied in rabbits during the final third of gestation. The placenta became progressively easier to separate from the uterine wall as gestation proceeded. This ease of separation was associated with degenerative changes in the decidual tissue, but disruption of the placental labyrinth was not observed until the last 24 hr of pregnancy. Two types of decidual cells were observed; smaller uninucleate glycogen-containing cells and larger multinucleate cells with lipid inclusions. The ageing placentae exhibited increasing decidual degeneration associated with deposition of extracellular fibrous materials. Glycogen became less widely distributed over the period of study and changed from the beta- to the alpha-configuration. In contrast to the observed disruption of the decidual tissue, the placental labyrinth maintained its integrity until the final stages of pregnancy. A dramatic increase in subcellular activity was observed in the syncytiotrophoblast after 28 days of gestation.  相似文献   

17.
18.
Allopregnant (NFR/N [Swiss-derived] H-2q females x 57/Bl H-2b males) and syngeneically pregnant (NFR/N x NFR/N) mice were subjected to daily injections (10(5) U/mouse/day, from Day 5.5 of gestation) of recombinant rat or mouse interferon-gamma (IFNg) in order to investigate its ability to induce extra-embryonic major histocompatibility complex (MHC) expression and antipaternal immune reactions if administered during the first part of the gestation period. In addition, a limited number of IFNg-treated embryo-transferred NFR/N mice carrying C57/B1 embryos (representing a complete allogenic pregnancy) were investigated. Mouse and rat IFNg caused the same type of histological and physiological changes, and most of the experiments were performed by using rat IFNg. Several IFNg-treated mice (irrespective of type of mating) showed a drop in weight and a high rate of resorptions at Day 12.5 of gestation. This interference with pregnancy appeared not to be caused by immunological reactions against the feto-placental unit (no leukocyte infiltration and no significant effect on serum levels of antipaternal antibodies in preimmunized allopregnant IFNg-treated mice). Immunohistochemical stainings of cryosectioned tissues at Day 9.5 of pregnancy revealed that IFNg treatment caused a strong induction of MHC class I and class II expression on most cells in the uterus and on several cells in the maternal decidua, while there was a complete absence of detectable MHC class I and class II expression in the extra-embryonic tissues. Characteristic for a Day 12.5 placenta of an IFNg-treated mouse (including embryo-transferred mice) was a strongly MHC class II-induced maternal decidua and a completely MHC class II-negative fetal placenta. The pattern of IFN-induced MHC class I expression was similar to that of class II, with the exception of class I expression on scattered cells within the basal zone. Thus, the present study provides immunohistological evidence that IFNg administered in vivo during the first part of gestation is not capable of inducing MHC expression on murine extra-embryonic cells despite an extremely high expression of MHC molecules on decidual cells in intimate contact with extra-embryonic tissues. It is likely that the resistance to IFNg-mediated induction of MHC expression on extra-embryonic cells is of basic importance for the protection of mammalian semi-allogeneic fetuses.  相似文献   

19.
20.
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated from ovine hypothalamus and is known to act as a tropic factor in various cells. Recent report revealed the expression of PACAP and the PACAP type I (PAC(1)) receptor in human and rat placentas at term. Placenta is a critical organ that synthesizes several growth and angiogenic factors for its own growth as well as fetal development. However, there is little information regarding the expression pattern and cellular localization of PACAP and PAC(1) during pregnancy. The aim of this study was to define the expression and distribution of PACAP and PAC(1) receptor mRNAs in the rat placenta during pregnancy. PACAP and PAC(1) receptor mRNAs were expressed in decidual cells, chorionic vessels, and stromal cells of the chorionic villi. Interestingly, the expression of these genes varied with the day of gestation. For example, PACAP and PAC(1) receptor mRNAs expressed in decidual cells on day 13.5 and 15.5, their expression was strong in chorionic vessels and stromal cells of the chorionic villi within the labyrinth zone on day 17.5, 19.5, and 21.5. In fact, as gestation advanced, the expression of PACAP and PAC(1) receptor mRNAs in the decidua cells disappeared, as their high expression became evident in the chorionic vessels and stromal cells of the chorionic villi. Our finding that PACAP and the PAC(1) receptor are co-localized and their genes seemingly co-regulated within specific placental areas, strongly suggest that this peptide may play an important role, as an autoregulator or pararegulator via its PAC(1) receptor, in physiological functioning of the placenta for gestational maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号