首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanog and transcriptional networks in embryonic stem cell pluripotency   总被引:31,自引:0,他引:31  
Pan G  Thomson JA 《Cell research》2007,17(1):42-49
  相似文献   

2.
3.
Induced pluripotency requires the expression of defined factors and culture conditions that support the self-renewal of embryonic stem (ES) cells. Small molecule inhibition of MAP kinase (MEK) and glycogen synthase kinase 3 (GSK3) with LIF (2i/LIF) provides an optimal culture environment for mouse ES cells and promotes transition to naive pluripotency in partially reprogrammed (pre-iPS) cells. Here we show that 2i/LIF treatment in clonal lines of pre-iPS cells results in the activation of endogenous Nanog and rapid downregulation of retroviral Oct4 expression. Nanog enables somatic cell reprogramming in serum-free medium supplemented with LIF, a culture condition which does not support induced pluripotency or the self-renewal of ES cells, and is sufficient to reprogram epiblast-derived stem cells to naive pluripotency in serum-free medium alone. Nanog also enhances reprogramming in cooperation with kinase inhibition or 5-aza-cytidine, a small molecule inhibitor of DNA methylation. These results highlight the capacity of Nanog to overcome multiple barriers to reprogramming and reveal a synergy between Nanog and chemical inhibitors that promote reprogramming. We conclude that Nanog induces pluripotency in minimal conditions. This provides a strategy for imposing naive pluripotency in mammalian cells independently of species-specific culture requirements.  相似文献   

4.
5.
6.
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts grow infinitely while maintaining pluripotency. Leukemia inhibitory factor (LIF) can maintain self-renewal of mouse ES cells through activation of Stat3. However, LIF/Stat3 is dispensable for maintenance of ICM and human ES cells, suggesting that the pathway is not fundamental for pluripotency. In search of a critical factor(s) that underlies pluripotency in both ICM and ES cells, we performed in silico differential display and identified several genes specifically expressed in mouse ES cells and preimplantation embryos. We found that one of them, encoding the homeoprotein Nanog, was capable of maintaining ES cell self-renewal independently of LIF/Stat3. nanog-deficient ICM failed to generate epiblast and only produced parietal endoderm-like cells. nanog-deficient ES cells lost pluripotency and differentiated into extraembryonic endoderm lineage. These data demonstrate that Nanog is a critical factor underlying pluripotency in both ICM and ES cells.  相似文献   

7.
Regulation of the pluripotency marker Rex-1 by Nanog and Sox2   总被引:7,自引:0,他引:7  
  相似文献   

8.
In this report, we establish that Drosophila ADAR (adenosine deaminase acting on RNA) forms a dimer on double-stranded (ds) RNA, a process essential for editing activity. The minimum region required for dimerization is the N-terminus and dsRNA-binding domain 1 (dsRBD1). Single point mutations within dsRBD1 abolish RNA-binding activity and dimer formation. These mutations and glycerol gradient analysis indicate that binding to dsRNA is important for dimerization. However, dimerization can be uncoupled from dsRNA-binding activity, as a deletion of the N-terminus (amino acids 1-46) yields a monomeric ADAR that retains the ability to bind dsRNA but is inactive in an editing assay, demonstrating that ADAR is only active as a dimer. Different isoforms of ADAR with different editing activities can form heterodimers and this can have a significant effect on editing in vitro as well as in vivo. We propose a model for ADAR dimerization whereby ADAR monomers first contact dsRNA; however, it is only when the second monomer binds and a dimer is formed that deamination occurs.  相似文献   

9.
In the absence of other proteins, the DNA polymerase (Pol-8) of Kaposi's sarcoma herpesvirus incorporates only several nucleotides from a primer template. However, association with the Kaposi's sarcoma herpesvirus processivity factor (PF-8) enables Pol-8 to incorporate thousands of nucleotides. Unlike the well described sliding clamp processivity factors, eukaryotic proliferating cell nuclear antigen and Escherichia coli beta-subunit, PF-8 and other herpesvirus processivity factors do not require a clamp loader or ATP to bind to template DNA. To begin to understand the mechanism used by PF-8 to achieve processivity, we have now purified PF-8 and demonstrated that it is a dimer both in solution and on the DNA. Mutational analysis of the PF-8 protein (396R) indicates that residues between 277 and 304 as well as the N-terminal 21 amino acids are required for dimerization. The results further correlate PF-8 dimerization with binding to Pol-8 and stabilizing Pol-8 on primer template. Notably, although removal of only 26 residues from the C terminus of PF-8 does not affect its ability to form dimers on DNA or to bind Pol-8, only short DNA chains (<100 nucleotides) are synthesized. This indicates that full-length PF-8 is necessary to enable Pol-8 to incorporate thousands of nucleotides. Interestingly, cross-linking of the processivity factor UL44 of cytomegalovirus reveals that it is a dimer in solution also.  相似文献   

10.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a unique scavenger receptor that plays important roles in atherogenesis and has been thought to function as a monomer. Using coimmunoprecipitation studies, we demonstrate that human LOX-1 (hLOX-1) forms constitutive homo-interactions in vivo. Western blot analysis of cell lysates under nonreducing or reducing conditions revealed one clear immunoreactive species corresponding to the size of a putative receptor dimer or a monomer, respectively, consistent with the presence of disulfide-linked hLOX-1 complexes. Site-directed mutagenesis studies indicated that cysteine 140 has a key role in the formation of these disulfide-linked hLOX-1 dimers. Eliminating this intermolecular disulfide bond markedly impairs the recognition of Escherichia coli by hLOX-1. Furthermore, these dimers can act as a "structural unit" to form noncovalently associated oligomers, as demonstrated by a membrane-impermeant crosslinker, which resulted in immunoreactive species corresponding to the sizes of putative tetramers and hexamers. These results provide the first evidence for the existence of hLOX-1 dimers/oligomers.  相似文献   

11.
12.
Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of proinflammatory cytokines, all of which share a high degree of amino acid sequence similarity. Aberrant expression of chemokines occurs in a variety of diseases that have an inflammatory component, such as atherosclerosis. Although structural analyses indicate that chemokines form homodimers, there is controversy about whether dimerization is necessary for activity. To address this question for MCP-1, we obtained evidence in four steps. First, coprecipitation experiments demonstrated that MCP-1 forms dimers at physiological concentrations. Second, chemically cross-linked MCP-1 dimers attract monocytes in vitro with a 50% effective concentration of 400 pM, identical to the activity of non-cross-linked MCP-1. Third, an N-terminal deletion variant of MCP-1 (called 7ND) that inhibits MCP-1-mediated monocyte chemotaxis specifically forms heterodimers with wild-type MCP-1. Finally, although 7ND inhibits wild-type MCP-1 activity, it has no effect on cross-linked MCP-1. These results indicate that 7ND is a dominant negative inhibitor, implying that MCP-1 activates its receptor as a dimer. In addition, chemical cross-linking restores activity to an inactive N-terminal insertional variant of MCP-1, further supporting the need for dimerization. Since the reported Kd for MCP-1 monomer dissociation is much higher than its 50% effective concentration or Kd for receptor binding, active dimer formation may require high local concentrations of MCP-1. Our data further suggest that the dimer interface can be a target for MCP-1 inhibitory drugs.  相似文献   

13.
14.
15.
The CXXC motif is more than a redox rheostat   总被引:1,自引:0,他引:1  
The CXXC active-site motif of thiol-disulfide oxidoreductases is thought to act as a redox rheostat, the sequence of which determines its reduction potential and functional properties. We tested this idea by selecting for mutants of the CXXC motif in a reducing oxidoreductase (thioredoxin) that complement null mutants of a very oxidizing oxidoreductase, DsbA. We found that altering the CXXC motif affected not only the reduction potential of the protein, but also its ability to function as a disulfide isomerase and also impacted its interaction with folding protein substrates and reoxidants. It is surprising that nearly all of our thioredoxin mutants had increased activity in disulfide isomerization in vitro and in vivo. Our results indicate that the CXXC motif has the remarkable ability to confer a large number of very specific properties on thioredoxin-related proteins.  相似文献   

16.
17.
The NUDF protein is required for nuclear migration through the mycelium of the filamentous fungus Aspergillus nidulans. It is of particular interest, because it closely resembles a human protein, LIS1, that is required for development of the cerebral cortex. Both are approximately 50-kDa proteins with a short N-terminal predicted coiled coil and seven WD-40 domains in the C-terminal half of the molecule. They also interact with homologous proteins, suggesting that they may have similar biochemical functions. Here we describe the purification to homogeneity of NUDF protein in a single step from a cell-free extract of A. nidulans. We demonstrate that NUDF is a homodimer, that its dimerization occurs via the N-terminal coiled coil region of the molecule, and that it must be a dimer to support the growth of A. nidulans.  相似文献   

18.
19.
Abstract It is well established that phytochrome exists as a dimer in vitro. A comparison of the relative photoequilibrium concentrations of PrPr, PrPfr and PfrPfr, with the relative sizes of the Pfr-pools which undergo dark reversion in the intact plant, leads to the hypothesis that phytochrome also exists as a dimer in vivo, This hypothesis is in accordance with kinetic properties of the phytochrome system under continuous irradiation. Additional support for this view is provided by the observation that Pfr-destruction after a red light flash, which should favour the formation of PrPfr dimers, is paralleled by a decay of Pr, even if the presence of Pr cycled through Pfr can be excluded. Preliminary observations could indicate an interaction of the subunits of a phytochrome dimer during the process of phototransformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号