首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new method for quantitatively assaying the omega subunit of Escherichia coli RNA polymerase. The assay is based on the ability of RNA polymerase holoenzyme to catalyze the continuous synthesis of the dinucleotide pApU on a poly[d(A-T)] . poly[d(A-T)] template when supplied with AMP and UTP as substrates. Core enzyme, lacking omega subunit, catalyzed this reaction at a rate less than 1% that of holoenzyme. The omega subunit was not released from the enzyme/DNA complex during dinucleotide synthesis. Using this assay, a titration of a fixed concentration of core enzyme was observed with increasing concentrations of added omega subunit. Below a 1:1 omega:core ratio the measured activity increased linearly with omega concentration, whereas above a 1:1 ratio the activity remained constant. An immediate application of the assay is in determining the concentration of active omega, or equivalently of active holoenzyme, in any RNA polymerase preparation.  相似文献   

2.
Highly purified Escherichia coli RNA polymerase contains a small subunit termed omega that has a molecular mass of 10 105 Da and is comprised of 91 amino acids. E. coli strains lacking omega (omega-less) are viable, but exhibit a slow-growth phenotype. Renaturation of RNA polymerase isolated from an omega-less mutant, in the presence of omega, resulted in maximum recovery of activity. The omega-less RNA polymerase from omega-less strains recruits the chaperonin, GroEL (unlike the wild-type enzyme), suggesting a structural deformity of the mutant enzyme. The GroEL-containing core RNA polymerase interacts efficiently with sigma70 to generate the fully functional holoenzyme. However, when GroEL was removed, the enzyme was irreversibly nonfunctional and was unable to bind to sigma70. The damaged enzyme regained activity after going through a cycle of denaturation and reconstitution in the presence of omega or GroEL. GroES was found to have an inhibitory effect on the core-sigma70 association unlike the omega subunit. The omega subunit may therefore be needed for stabilization of the structure of RNA polymerase.  相似文献   

3.
The omega subunit of Escherichia coli RNA polymerase, consisting of 90 amino acids, is present in stoichiometric amounts per molecule of core RNA polymerase (alpha2betabeta'). The presence of omega is necessary to restore denatured RNA polymerase in vitro to its fully functional form, and, in an omega-less strain of E. coli, GroEL appears to substitute for omega in the maturation of RNA polymerase. The X-ray structure of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch on to beta' at its N-terminus and C-terminus. We show here that omega binds only the intact beta' subunit and not the beta' N-terminal domain or beta' C-terminal domain, implying that omega binding requires both these regions of beta'. We further show that omega can prevent the aggregation of beta' during its renaturation in vitro and that a V8-protease-resistant 52-amino-acid-long N-terminal domain of omega is sufficient for binding and renaturation of beta'. CD and functional assays show that this N-terminal fragment retains the structure of native omega and is able to enhance the reconstitution of core RNA polymerase. Reconstitution of core RNA polymerase from its individual subunits proceeds according to the steps alpha + alpha --> alpha2 + beta --> alpha2beta + beta' --> alpha2betabeta'. It is shown here that omega participates during the last stage of enzyme assembly when beta' associates with the alpha2beta subassembly.  相似文献   

4.
Interaction with eukaryotic TATA-binding protein (TBP) was analyzed for natural Escherichia coli RNA polymerase or the recombinant holoenzyme, minimal enzyme, or its sigma subunit. Upon preincubation of full-sized RNA polymerase with TBP and further incubation with a constant amount of 32P-labeled phosphamide derivative of a TATA-containing oligodeoxyribonucleotide, the yield of the holoenzyme-oligonucleotide covalent complex decreased with increasing TBP concentration. This was considered as indirect evidence for complexing of RNA polymerase with TBP. In gel retardation assays, the holoenzyme, but neither minimal enzyme nor the sigma subunit, interacted with TPB, since the labeled probe formed complexes with both proteins in the reaction mixture combining TBP with the minimal enzyme or the sigma subunit. It was assumed that E. coli RNA polymerase is functionally similar to eukaryotic RNA polymerase II, and that the complete ensemble of all subunits is essential for the specific function of the holoenzyme.  相似文献   

5.
This paper reports the construction of plasmids which direct the overproduction of the omega subunit of Escherichia coli RNA polymerase and the subsequent purification of omega. Useful overproduction is achieved only if the natural ribosomal binding site region of rpoZ is replaced with the ribosomal binding site region of bacteriophage T7 gene 10. Overproduction is directed by T7 RNA polymerase which is provided on a separate plasmid. omega is purified by three column steps either from the insoluble inclusion body fraction or from the soluble fractions of lysates. The final yield is approximately 2 mg omega per 10 g cells wet wt. Additionally, we found that recombinant omega is readily cleaved by an endogenous protease. Sequence analysis of the most prevalent proteolytic fragment suggested that the protease responsible was the product of the ompT gene. Cleavage of omega is greatly reduced in ompT- strains.  相似文献   

6.
7.
《Gene》1997,187(2):165-170
By means of the yeast two-hybrid system using the 40-kDa subunit of mouse RNA polymerase I, mRPA40, as the bait, we isolated a mouse cDNA which encoded a protein with significant homology in amino acid sequence to the 12.5-kDa subunit of Saccharomyces cerevisiae RNA polymerase II, B12.5 (RPB11). Specific antibody raised against the recombinant protein that was derived from the cDNA reacted with a 14-kDa polypeptide in highly purified mammalian RNA polymerase II and did not react with any subunit of RNA polymerase I or III. Moreover, the antibody co-immunoprecipitated the largest subunit of mouse RNA polymerase II. These results provide biochemical evidence that the cDNA isolated, named mRPB14, encodes a specific subunit of RNA polymerase II, and indicate that the subunit organization of the enzyme is conserved between yeast and mouse. A possible role of the α-motif [Dequard-Chablat, M., Riva, M., Carles, C. and Sentenac, A., J. Biol. Chem. 266 (1991) 15300–15307] in the protein-protein interaction between mRPA40 and mRPB14 is also discussed.  相似文献   

8.
The evolving story of the omega subunit of bacterial RNA polymerase   总被引:1,自引:0,他引:1  
Omega (omega) is the smallest subunit of bacterial RNA polymerase (RNAP). Although identified early in RNAP research, its function remained ambiguous and shrouded by controversy for a considerable period. It has subsequently been shown that the protein has a structural role in maintenance of the conformation of the largest subunit, beta', and recruitment of beta' to the enzyme assembly. Conservation of this function across all forms of life indicates the importance of its role. Several recent observations have suggested additional functional roles for this protein and have settled some long-standing controversies surrounding it. In this context, revisiting the omega subunit story is especially interesting; here, we review the progress of omega research since its discovery and highlight the importance of these recent observations.  相似文献   

9.
10.
11.
Rau  V. A.  Drachkova  I. A.  Rar  V. A.  Sokolenko  A. A.  Arshinova  T. V.  Kobzev  V. F.  Savinkova  L. K. 《Molecular Biology》2003,37(5):760-766
Interaction with eukaryotic TATA-binding protein (TBP) was analyzed for natural Escherichia coli RNA polymerase or the recombinant holoenzyme, minimal enzyme, or its subunit. Upon preincubation of full-sized RNA polymerase with TBP and further incubation with a constant amount of a 32P-labeled phosph-amide derivative of a TATA-containing oligodeoxyribonucleotide, the yield of the holoenzyme–oligonucleotide covalent complex decreased with increasing TBP concentration. This was considered as indirect evidence for complexing of RNA polymerase with TBP. In gel retardation assays, the holoenzyme, but neither the minimal enzyme nor the subunit, interacted with TPB, since the labeled probe formed complexes with both proteins in the reaction mixture combining TBP with the minimal enzyme or the subunit. It was assumed that E. coli RNA polymerase is functionally similar to eukaryotic RNA polymerase II, and that the complete ensemble of all subunits is essential for the specific function of the holoenzyme.  相似文献   

12.
Omega (omega), consisting of 91 amino acids, is the smallest of all the Escherichia coli RNA polymerase subunits and is organized into an N-terminal domain of 53 amino acids followed by an unstructured tail in the C-terminal region. Our earlier experiments have shown a chaperone-like function of omega in which it helps to maintain beta' in a correct conformation and recruit it to the alpha(2)beta subassembly to form a functional core enzyme (alpha(2)betabeta'omega). The X-ray structure analysis of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch onto the N-terminal and C-terminal ends of the beta'-subunit. In the present study we have monitored the conformational changes in beta' as the denatured protein is refolded in the presence and absence of omega using tryptophan fluorescence emission of beta' as well as acrylamide quenching of Trp fluorescence. Results indicate that the presence of stoichiometric amounts of omega is helpful in beta' refolding. We have also monitored the behavior of the C-terminal tail of omega by engineering three cysteine residues at three different sites in omega and subsequently labeling them with a sulphydryl-specific fluorescent probe. Fluorescence anisotropy measurements of the labeled protein indicate that the C-terminal domain of omega is mobile in the free protein and gets restrained in the presence of beta'. Calculations on side-chain interactions show that out of the three mutated positions, two have near neighbourhood interactions only with side-chains in the beta' subunit whereas the end of the C-terminal of omega, although it is restrained in the presence of beta', has no interacting partner within a 4-A radius.  相似文献   

13.
14.
15.
Encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which allowed easy purification of the fusion protein by affinity chromatography on immobilized glutathione. Inclusion of a thrombin cleavage site between the GST carrier and the viral enzyme facilitated the release of purified mature EMC virus RNA polymerase from the GST carrier by proteolysis with thrombin. The purified recombinant enzyme has a molecular mass of about 52 kDa and is recognized by polyclonal immune serum raised against a peptide sequence corresponding to the C-terminal region of the protein. The recombinant enzyme comigrates with immunoprecipitated EMC virus RNA polymerase from infected mouse L929 cell extracts when run in parallel lanes on a sodium dodecyl sulfate-polyacrylamide gel. The enzyme exhibits rifampin-resistant, poly(A)-dependent poly(U) polymerase activity and RNA polymerase activity, which are both oligo(U) dependent. Template-size products are synthesized in in vitro reactions with EMC virus genomic RNA or globin mRNA. The availability of recombinant EMC virus RNA polymerase in a purified form will allow biochemical analysis of its role in the replication of the virus as well as structure-function studies of this unique class of enzyme.  相似文献   

16.
17.
RNA polymerase was purified from five species of Bacillus, including Bacillus subtilis. Each polymerase had a subunit composition analogous to that reported for B. subtilis, i.e., beta beta '2 alpha sigma delta omega 1 omega 2. The delta subunits from the B. subtilis and Bacillus thuringiensis polymerases were interchangeable, as judged from their effects on promoter selection in the polymerase binding assay.  相似文献   

18.
During the purification of RNA polymerase from Xanthomonas campestris pv. oryzae, a new subunit named k was found to be associated with this enzyme. The removal of subunit k from holoenzyme by DEAE-cellulose column chromatography results in a decrease in specific activity of the enzyme. The readdition of subunit k to subunit k-depleted holoenzyme results in restoration of enzymatic activity. Subunit k increase the activity of RNA polymerase; the activation was in proportion to the concentration of subunit k added. Antiserum against holoenzyme devoid of subunit k was prepared. This antiserum did not react with purified subunit k; therefore, subunit k may not be the proteolytic fragment of the beta, beta', sigma, or alpha subunit. When this antiserum was used to precipitate RNA polymerase obtained from a crude extract of bacterial cells, subunit k was coprecipitated as determined by sodium dodecyl sulfate gel electrophoretic analysis. The molecular mass of subunit k is approximately 29 kDa, and the molar ratio of beta:beta':sigma:alpha:k was estimated to be 1:1:1:2:4. When native Xp10 DNA was used as template, subunit k stimulated subunit k-depleted holoenzyme, but not core enzyme. When the synthetic polynucleotide poly[d(A-T)] was used, subunit k activated both subunit k-depleted holoenzyme and core enzyme. Subunit k also activated the binding of RNA polymerase to template DNA.  相似文献   

19.
20.
Purified RNA polymerase I was phosphorylated by the endogenous protein kinase or dephosphorylated by alkaline phosphatase and used as antigen in a radioimmunoassay with sera from systemic lupus erythematosus patients or serum from an immunized rabbit. Enzyme incubated in the absence of ATP or phosphatase served as control. Three to seven times more of the autoantibodies in the patients' sera reacted with phosphorylated RNA polymerase I than with control enzyme. The reactivity of the dephosphorylated enzyme with lupus autoantibodies was only 50-60% of that observed with control enzyme. Neither phosphorylation nor dephosphorylation of the enzyme had an effect on its reaction with the rabbit antibodies. The effect of phosphorylation on the reaction of each RNA polymerase I subunit (S1-S8; Mr = 190,000-17,000) with the patients' antibodies was determined by an immunoblot procedure following resolution of the subunits on polyacrylamide gels. Prior phosphorylation of the enzyme resulted in a dramatic increase in binding of each patient's antibodies to all polymerase subunits with the exception of S4. Anti-S4 antibody was not detected with either phosphorylated or control enzyme. Strikingly, antibodies in each patients' sera reacted with S6 only after its phosphorylation. Similarly, anti-S5 antibodies in the serum of one patient were only detected with phosphorylated RNA polymerase I. The present data suggest that at least a significant fraction of the anti-RNA polymerase I autoantibodies in the sera of systemic lupus erythematosus patients might be directed against phosphorylated sites on the enzyme and that phosphorylation may have a role in the production of this and other autoimmunogenic nuclear components which are hallmarks of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号