首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new phthalate acid derivatives, 2,12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecyl phthalate (1), 2-ethyldecyl 2-ethylundecyl phthalate (2), and bis(2-ethyldodecyl) phthalate (3), were isolated from seahorse, Hippocampus Kuda Bleeler, together with a known natural analog bis(2-ethylheptyl) phthalate (4). The structures of these compounds were elucidated mainly by means of the comprehensive analysis of their NMR spectroscopic data. The four phthalate derivatives showed dose-dependent cathepsin B inhibitions activities with IC(50) values of 0.13 mM (1), 0.21 mM (2), 0.18 mM (3), and 0.29 mM (4), respectively.  相似文献   

2.
A bacterial strain capable of rapidly degrading di-2-ethylhexyl phthalate (DEHP) was isolated from soil and identified as Bacillus subtilis. The organism also utilized di-butyl phthalate, di-ethyl phthalate, di-pentyl phthalate, di-propyl phthalate, and phthalic acid as sole carbon sources; and their biodegradation ratio was over 99%, when the incubation was performed for 5 days at 30°C. The microorganism degraded di-2-ethylhexyl phthalate and di-butyl phthalate through the intermediate formation of mono-2-ethylhexyl phthalate and mono-butyl phthalate, which were then metabolized to phthalic acid and further by a protocatechuate pathway, as evidenced by oxygen uptake studies and GC-MS analysis. The decontamination of soil polluted with di-2-ethylhexyl phthalate by B. subtilis was investigated. Experimental results showed that the strain could degrade about 80% of 5 mM DEHP simply by adding 8% culture medium to soil, indicating that the degradation can occur even when other organisms are present.  相似文献   

3.
Pseudomonas is a genus of non-fermentative gram-negative Gammaproteobacteria found both on land and in the water. Many terrestrial isolates of this genus have been studied extensively. While many produce bioactive substances, enzymes, and biosurfactants, other Pseudomonas isolates are used for biological control of plant diseases and bioremediation. In contrast, only a few marine isolates of this genus have been described that produce novel bioactive substances. The chemical structures of the bioactive substances from marine Pseudomonas are diverse, including pyroles, pseudopeptide pyrrolidinedione, phloroglucinol, phenazine, benzaldehyde, quinoline, quinolone, phenanthren, phthalate, andrimid, moiramides, zafrin and bushrin. Some of these bioactive compounds are antimicrobial agents, and dibutyl phthalate and di-(2-ethylhexyl) phthalate have been reported to be cathepsin B inhibitors. In addition to being heterogeneous in terms of their structures, the antibacterial substances produced by Pseudomonas also have diverse mechanisms of action: some affect the bacterial cell membrane, causing bacterial cell lysis, whereas others act as acetyl-CoA carboxylase and nitrous oxide synthesis inhibitors. Marine Pseudomonas spp. have been isolated from a wide range of marine environments and are a potential untapped source for medically relevant bioactive substances.  相似文献   

4.
Gordonia sp. strain P8219, a strain able to decompose di-2-ethylhexyl phthalate, was isolated from machine oil-contaminated soil. Mono-2-ethylhexyl phthalate hydrolase was purified from cell extracts of this strain. This enzyme was a 32,164-Da homodimeric protein, and it effectively hydrolyzed monophthalate esters, such as monoethyl, monobutyl, monohexyl, and mono-2-ethylhexyl phthalate. The K(m) and V(max) values for mono-2-ethylhexyl phthalate were 26.9 +/- 4.3 microM and 18.1 +/- 0.9 micromol/min . mg protein, respectively. The deduced amino acid sequence of the enzyme exhibited less than 30% homology with those of meta-cleavage hydrolases which are serine hydrolases but exhibited no significant homology with the sequences of serine esterases. The pentapeptide motif GXSXG, which is conserved in serine hydrolases, was present in the sequence. The enzymatic properties and features of the primary structure suggested that this enzyme is a novel enzyme belonging to an independent group of serine hydrolases.  相似文献   

5.
Gas chromatographic and gas chromatographic—mass specrometric analytical techniques were employed to quantitate and confirm levels of circulating organic plasticizers in critically ill surgical patients. Two plasticizers, dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), have been identified. DEHP can be found in many plastic medical devices. The DEHP levels were significant soon after transfusion or in the presence of renal dysfunction. The source of DBP is not clear at present and requires further study. The prevention of this contamination and the toxicity of these plasticizers should be investigated to ensure the safe use of plastic medical devices.  相似文献   

6.
A study was conducted to find means of enhancing the biodegradation of hydrophobic organic compounds in nonaqueous-phase liquids (NAPLs). The effects of surfactants, identity of the NAPL and agitation was investigated. When present in NAPLs, phenanthrene, di-(2-ethylhexyl) phthalate (DEHP) and biphenyl were mineralized slowly in soil. Addition of Triton X-100 or Alfonic 810-60 did not enhance the degradation of phenanthrene initially in hexadecane or dibutyl phthalate. Slurrying the soil increased the rate and extent of mineralization of phenanthrene initially in hexadecane but not in dibutyl phthalate. Addition of either of the two surfactants to the slurries did not promote the transformation. Triton X-100, Alfonic 810-60 and Tergitol 15-S-9 below their critical micelle concentrations increased the rate and sometimes the extent of mineralization in soil slurries of phenanthrene initially in 2,2,4,4,6,8,8-heptamethylnonane, but other surfactants were not stimulatory. Slurrying the soil promoted the initial mineralization of DEHP initially in dibutyl phthalate, and Alfonic 810-60 and Triton X-100 further stimulated the rate and extent of degradation in the slurries. Alfonic 810-60 increased the extent of mineralization in slurries of biphenyl in hexadecane but not in dibutyl phthalate, cyclohexane, kerosene or two oils. Little mineralization of biphenyl or DEHP initially in dibutyl phthalate occurred in soil slurries, but Tween 80, Tergitol 15-S-40 and Tergitol 15-S-9 increased the extent of mineralization. However, vigorous agitation of the slurries of soil acclimated to DEHP or the use of small volumes of the NAPL resulted in marked enhancement of the degradation. Thus, biodegradation of constituents of NAPLs in soil can be increased by the use of some surfactants, slurrying or intense agitation, but the effect will vary with the NAPL and the constituents.  相似文献   

7.
A series of thiosemicarbazone analogs based on the benzophenone, thiophene, pyridine, and fluorene molecular frameworks has been prepared by chemical synthesis and evaluated as small-molecule inhibitors of the cysteine proteases cathepsin L and cathepsin B. The two most potent inhibitors of cathepsin L in this series (IC(50)<135 nM) are brominated-benzophenone thiosemicarbazone analogs that are further functionalized with a phenolic moiety (2 and 6). In addition, a bromo-benzophenone thiosemicarbazone acetyl derivative (3) is also strongly inhibitory against cathepsin L (IC(50)=150.8 nM). Bromine substitution in the thiophene series results in compounds that demonstrate only moderate inhibition of cathepsin L. The two most active analogs in the benzophenone thiosemicarbazone series are highly selective for their inhibition of cathepsin L versus cathepsin B.  相似文献   

8.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

9.
Gordonia sp. strain P8219, a strain able to decompose di-2-ethylhexyl phthalate, was isolated from machine oil-contaminated soil. Mono-2-ethylhexyl phthalate hydrolase was purified from cell extracts of this strain. This enzyme was a 32,164-Da homodimeric protein, and it effectively hydrolyzed monophthalate esters, such as monoethyl, monobutyl, monohexyl, and mono-2-ethylhexyl phthalate. The Km and Vmax values for mono-2-ethylhexyl phthalate were 26.9 ± 4.3 μM and 18.1 ± 0.9 μmol/min · mg protein, respectively. The deduced amino acid sequence of the enzyme exhibited less than 30% homology with those of meta-cleavage hydrolases which are serine hydrolases but exhibited no significant homology with the sequences of serine esterases. The pentapeptide motif GXSXG, which is conserved in serine hydrolases, was present in the sequence. The enzymatic properties and features of the primary structure suggested that this enzyme is a novel enzyme belonging to an independent group of serine hydrolases.  相似文献   

10.
A series of peptidic fluorogenic substrates were synthesized to develop a flow cytometry assay (FACS) to monitor the proteolytic activity of cathepsin C in live cells. Of the 16 substrates tested, (NH(2)-aminobutyric-homophenylalanine)(2)-rhodamine demonstrated the best reactivity and selectivity profile in the FACS assay using the B721 human B-lymphoblastoid cell line. The resulting FACS assay was validated through correlation of the IC(50) values with a competitive radiolabeling assay against a series of small molecule inhibitors of cathepsin C.  相似文献   

11.
Anaerobic microorganisms in municipal solid waste samples from laboratory-scale landfill reactors and a pilot-plant biogas digestor were investigated with the aim of assessing their ability to transform four commercially used phthalic acid esters (PAEs) and phthalic acid (PA). The PAEs studied were diethyl phthalate (DEP), butylbenzyl phthalate (BBP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). No biological transformation of DEHP could be detected in any of the experiments. Together with waste samples from the simulated landfilling conditions, the PAEs (except DEHP) were hydrolytically transformed to their corresponding monoesters. These accumulated as end products, and in most cases they were not further degraded. During incubation with waste from the biogas digestor, the PAEs (except DEHP) were completely degraded to methane and carbon dioxide. The influence of the landfill development phase on the transformations was investigated utilizing PA and DEP as model substances. We found that during both the intense and stable methanogenic (but not the acidogenic) phases, the microoganisms in the samples had the potential to transform PA. A shorter lag phase was observed for the PA transformation in the samples from the stable methanogenic phase as compared with earlier phases. This indicates an increased capacity to degrade PA during the aging phases of the municipal solid waste in landfills. No enhancement of the DEP transformation could be observed as conditions in the methanogenic landfill model changed over a year's time. The results indicate that microorganisms developing in a methanogenic landfill environment have a substantially lower potential to degrade PAEs compared with those developing in a biogas reactor.Abbreviations BBP butylbenzyl phthalate - DEHP bis(2-ethylhexyl) phthalate - CoA coenzyme A - DBP dibutyl phthalate - DEP diethyl phthalate - DS dry solids - MBeP monobenzyl phthalate - MBuP monobutyl phthalate - MEP monoethyl phthalate - MSW municipal solid waste - PA phthalic acid - PAE(s) phthalic acid ester(s) - VFA volatile fatty acids  相似文献   

12.
Cathepsins B and L belong to the papain superfamily of cysteine proteases and play important roles in various physiological and pathological processes. In the course of studies on their inhibitors, we examined the inhibitory effects of the peptide aldehyde benzyloxycarbonyl-leucyl-leucyl-leucinal (ZLLLal) and its analogues. As a result, rat liver cathepsins B and L were shown to be strongly inhibited by them. The concentration required for 50% inhibition (IC(50)) by ZLLLal was 88 nM for cathepsin B and 163 nM for cathepsin L. Moreover, various analogues of ZLLLal, including 2-furancarbonyl-, nicotinyl-, isonicotinyl- and 4-morpholinylsuccinyl-LLLals, and some acetyl-Pro (AcP)-containing analogues, AcPLLLal and AcPPLLLal, were shown to inhibit both enzymes more strongly than ZLLLal. Among them, isonicotinyl-LLLal was most inhibitory against both cathepsins B (IC(50), 12 nM) and L (IC(50), 20 nM). Several of these inhibitors were indicated to be somewhat more soluble in aqueous media than ZLLLal.  相似文献   

13.
组织蛋白酶B是木瓜蛋白酶类半胱氨酸蛋白酶家族的重要成员,它与人类多种疾病相关,尤其是在恶性肿瘤的侵袭转移过程中扮演了重要角色.通过随机筛选,发现了五个对组织蛋白酶B具有较好抑制活性的天然化合物prodelphinidin B-23'-O-gallate(1),prodelphinidin B-2(2),ImJcyarddin B-2(3),puexin A(4)和(-)epigallocatechin-3-O-gallate(5),其IC50值分别为0.58,0.44,0.76,2.07和0.96umol/L.这五个抑制剂为黄烷醇类化合物,均为组织蛋白酶B的新型天然抑制剂.  相似文献   

14.
A new class of inhibitors for cysteine proteases cathepsin B, L, K and S is described. These inhibitors are based on the beta-lactam ring designed to interact with the nucleophilic thiol of the cysteine in the active site of cysteine proteases. Some 3-acylamino-azetidin-2-one derivatives showed very potent inhibition activities for cathepsins L, K and S at the nanomolar or subnanomolar IC(50) values.  相似文献   

15.
Cathepsins K and L are related cysteine proteases that have been proposed to play important roles in osteoclast-mediated bone resorption. To further examine the putative role of cathepsin L in bone resorption, we have evaluated selective and potent inhibitors of human cathepsin L and cathepsin K in an in vitro assay of human osteoclastic resorption and an in situ assay of osteoclast cathepsin activity. The potent selective cathepsin L inhibitors (K(i) = 0.0099, 0.034, and 0.27 nm) were inactive in both the in situ cytochemical assay (IC(50) > 1 micrometer) and the osteoclast-mediated bone resorption assay (IC(50) > 300 nm). Conversely, the cathepsin K selective inhibitor was potently active in both the cytochemical (IC(50) = 63 nm) and resorption (IC(50) = 71 nm) assays. A recently reported dipeptide aldehyde with activity against cathepsins L (K(i) = 0.052 nm) and K (K(i) = 1.57 nm) was also active in both assays (IC(50) = 110 and 115 nm, respectively) These data confirm that cathepsin K and not cathepsin L is the major protease responsible for human osteoclastic bone resorption.  相似文献   

16.
The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and II, with a series of salicylic acid derivatives was investigated by using the esterase method with 4-nitrophenyl acetate as substrate. IC(50) values for sulfasalazine, diflunisal, 5-chlorosalicylic acid, dinitrosalicylic acid, 4-aminosalicylic acid, 4-sulfosalicylic acid, 5-sulfosalicylic acid, salicylic acid, acetylsalicylic acid (aspirin) and 3-metylsalicylic acid were of 3.04 microM, 3.38 microM, 4.07 microM, 7.64 microM, 0.13 mM, 0.29 mM, 0.42 mM, 0.56 mM, 2.71 mM and 3.07 mM for hCA I and of 4.49 microM, 2.70 microM, 0.72 microM, 2.80 microM, 0.75 mM, 0.72 mM, 0.29 mM, 0.68 mM, 1.16 mM and 4.70 mM for hCA II, respectively. Lineweaver-Burk plots were also used for the determination of the inhibition mechanism of these substituted phenols, most of which were noncompetitive inhibitors with this substrate. Some salicylic acid derivatives investigated here showed effective hCA I and II inhibitory activity, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents.  相似文献   

17.
The effects of fluorobenzaldehydes (2-,3- and 4-fluorobenzaldehyde) on the activity of mushroom tyrosinase have been studied. The results show that fluorobenzaldehydes can strongly inhibit both monophenolase activity and diphenolase activity of the enzyme and the inhibition is reversible. The IC50 values were estimated as 1.62 mM, 1.06 mM and 0.16 mM for diphenolase activity and as 1.35 mM, 1.18 mM and 1.05 mM for monophenolase activity, respectively. The lag time of the monophenolase was obviously lengthened by these three fluorobenzaldehydes. When the concentration of inhibitors reached 2.0 mM, the lag time was lengthened from 33 s to 142 s, 168 s and 190 s, respectively. Kinetic analyses show that the inhibition mechanism of 2-fluorobenzaldehyde on the diphenolase was competitive inhibition of the diphenolase activity, and that of 3-fluorobenzaldehyde and 4-fluorobenzaldehyde were of a mixed-type. The inhibition constants for these three fluorobenzaldehydes on the diphenolase were determined and compared.  相似文献   

18.
A series of aminoalkyl rupestonates were designed and synthesized by reacting rupestonic acid with 1,ω-dibromoalkanes, followed by amination. All of the new compounds were bioassayed in vitro to determine their activities against influenza A (H3N2, H1N1) and B viruses. The results showed that compounds 5a-5g, which each contain a 1H-1,2,4-triazolyl moiety, were found to be the most potent set of compounds. Compound 5g was demonstrated to possess the highest inhibitory activity against influenza H3N2 and H1N1, with IC(50) values of 0.97 and 0.42 μM, respectively. Our results also indicated that compounds 2g, 3g, 4g and 5g, which contain ten-CH(2)-unit spacers between the rupestonic acid and amino functional groups, were the most potent inhibitors of influenza H1N1 among the synthesized compounds. Unfortunately, most of the synthesized compounds did not show an obvious activity against influenza B; the only exceptions were compounds 5d and 5f, which had IC(50) values of 17.3 and 3.2 μM, respectively. Compounds 4g and 5g were potent inhibitors of influenza H1N1, and they might be potentially developed as new lead anti-influenza virus compounds. Further studies of the mechanism of action are underway.  相似文献   

19.
The inhibitory effects of nobiletin and hesperidin from citrus peel crude extracts on tyrosinase diphenolase activity are evaluated. IC50 of nobiletin and hesperidin is 1.49 mM and 16.08mM, respectively and their inhibition mechanism is competitive type with Ki = 2.82 mM and noncompetitive with Ki = 9.16 mM, respectively. Crude extracts from citrus peel (C. unshiu Marc.) were extracted with 95% ethanol and fractionated by petroleum ether (PCPE). The ethanol phase (ECPE) was further desorbed from macroporous adsorption resin (FGRE). Their IC50 values were 8.09 mg/mL, 7.53 mg/mL and 4.80 mg/mL, respectively. Their inhibition on melanogenesis in B16 mouse melanoma cells was also evaluated. FGRE showed a significant inhibition (42.5% at 31.25 microg/mL, p < 0.01) while hesperidin showed almost no inhibition. Nobiletin and PCPE give efficacious antiproliferation effects on B16 mouse melanoma cell with IC50 values 88.6 microM and 62.96 microg/mL, respectively, by the MTT test. Hesperidin and other crude extracts showed very low cytotoxity to the B16 cell.  相似文献   

20.
Gallic acid, one of the most abundant plant phenolic acids, has been modified to cathepsin D protease inhibitors. The strategy of modification was proposed basing on some previously reported structure and activity relationship (SAR) studies. The synthesized naphthophenone fatty acid amide derivatives have been evaluated for in vitro cathepsin D inhibition activity. Two of them have shown significant inhibition activity with IC(50) values of 0.06 and 0.14 microM, respectively, as compared against pepstatin (0.0023 microM), the most potent inhibitor known so far. The study revealed that such attempts on gallic acid based pharmacophores might result in potent inhibitors of cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号