首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis and activity of a series of 3-aroyl-derived analogs of novel pyrrolocarbazole 1 as poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are disclosed.  相似文献   

2.
Synthesis and activity of a series of 4-thiazol-yl substituted analogs of novel pyrrolocarbazole 1 as poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been disclosed.  相似文献   

3.
4.
5.
6.
The emerging role of poly(ADP-ribose) polymerase-1 in longevity   总被引:3,自引:0,他引:3  
In the present paper, the involvement of the family of poly(ADP-ribose) polymerases (PARPs), and especially of PARP-1, in mammalian longevity is reviewed. PARPs catalyse poly(ADP-ribosyl)ation, a covalent post-translational protein modification in eukaryotic cells. PARP-1 and PARP-2 are activated by DNA strand breaks, play a role in DNA base-excision repair (BER) and are survival factors for cells exposed to low doses of ionising radiation or alkylating agents. PARP-1 is the main catalyst of poly(ADP-ribosyl)ation in living cells under conditions of DNA breakage, accounting for about 90% of cellular poly(ADP-ribose). DNA-damage-induced poly(ADP-ribosyl)ation also functions as a negative regulator of DNA damage-induced genomic instability. Cellular poly(ADP-ribosyl)ation capacity in permeabilised mononuclear blood cells (MNC) is positively correlated with life span of mammalian species. Furthermore PARP-1 physically interacts with WRN, the protein deficient in Werner syndrome, a human progeroid disorder, and PARP-1 and WRN functionally cooperate in preventing carcinogenesis in vivo. Some of the other members of the PARP family have also been revealed as important regulators of cellular functions relating to ageing/longevity. In particular, tankyrase-1, tankyrase-2, PARP-2 as well as PARP-1 have been found in association with telomeric DNA and are able to poly(ADP-ribosyl)ate the telomere-binding proteins TRF-1 and TRF-2, thus blocking their DNA-binding activity and controlling telomere extension by telomerase.  相似文献   

7.
To obtain further information on time course and mechanisms of cell death after poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, we used HeLa cells exposed for 1 h to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. This treatment activated PARP-1 and caused a rapid drop of cellular NAD(H) and ATP contents, culminating 8-12 h later in cell death. PARP-1 antagonists fully prevented nucleotide depletion and death. Interestingly, in the early 60 min after challenge with N-methyl-N'-nitro-N-nitrosoguanidine, mitochondrial membrane potential and superoxide production significantly increased, whereas cellular ADP contents decreased. Again, these events were prevented by PARP-1 inhibitors, suggesting that PARP-1 hyperactivity leads to mitochondrial state 4 respiration. Mitochondrial membrane potential collapsed at later time points (3 h), when mitochondria released apoptosis-inducing factor and cytochrome c. Using immunocytochemistry and targeted luciferase transfection, we found that, despite an exclusive localization of PARP-1 and poly(ADP-ribose) in the nucleus, ATP levels first decreased in mitochondria and then in the cytoplasm of cells undergoing PARP-1 activation. PARP-1 inhibitors rescued ATP (but not NAD(H) levels) in cells undergoing hyper-poly(ADP-ribosyl)ation. Glycolysis played a central role in the energy recovery, whereas mitochondria consumed ATP in the early recovery phase and produced ATP in the late phase after PARP-1 inhibition, further indicating that nuclear poly(ADP-ribosyl)ation rapidly modulates mitochondrial functioning. Together, our data provide evidence for rapid nucleus-mitochondria cross-talk during hyper-poly(ADP-ribosyl)ation-dependent cell death.  相似文献   

8.
This study demonstrates that cupric 8-quinolinoxide (CuQ) has induced genetic toxicity in bacteria and mammalian cells through a mechanism of reactive oxygen species (ROS) generation. In the Ames test with rat liver S9, CuQ dose-dependently caused a point mutation in Salmonella typhimurium TA100. The effect of CuQ on DNA damage in HL60 and V79 cells identified in the comet assay is direct and enhanced by the addition of S9. Meanwhile, the tailing length of comet DNA is related to the increasing dosage of CuQ. The genotoxic effect of CuQ on either gene mutation in bacteria or DNA damage in culture cells can be generally blocked by several antioxidants, e.g. pyrrolidinedithiocarbamate, N-acetylcysteine, Vitamins C and E. Supportive of this observation, ROS generation induced by CuQ can be demonstrated both in vitro and in vivo by using the DCFH-DA fluoroprobe. The CuQ-induced intracellular ROS level is also dramatically inhibited by the above antioxidants. Above results imply that the CuQ-induced genotoxicity could be mediated by ROS generation. The nature of ferrous-dependent and S9-enhancing in CuQ-induced ROS generation hints a Fenton-like reaction or some specific enzymes activation could be involved in this process. Furthermore, a DNA damage- and oxidative stress-dependent protein, P53, could also been induced by CuQ treatments in a time-course and dose-dependent manners. Its expression level is recoverable by antioxidants too. In conclusion, our current study strongly suggests that CuQ induces gene mutation, global DNA damage, and P53 expression through a ROS-dependent mechanism.  相似文献   

9.
Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear protein activated by DNA damage. PARP-1 activation is associated in DNA repair, cell death and inflammation. Since oxidative stress induced robust DNA damage and wide spread inflammatory responses are common pathologies of various CNS diseases, the interest toward PARP-1 as a therapeutic target has peaked. This review introduces mechanism of PARP-1 activation, the role of PARP-1 in cell physiology and pathology, and discusses the potential of PARP-1 inhibition as a therapy in acute and chronic CNS diseases.  相似文献   

10.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

11.
12.
Poly(ADP-ribose) polymerase-1 (PARP-1) is an intracellular sensor of DNA strand breaks and plays a critical role in cellular responses to DNA damage. In normally functioning cells, PARP-1 enzymatic activity has been linked to the alterations in chromatin structure associated with gene expression. However, the molecular determinants for PARP-1 recruitment to specific sites in chromatin in the absence of DNA strand breaks remain obscure. Using gel shift and enzymatic footprinting assays and atomic force microscopy, we show that PARP-1 recognizes distortions in the DNA helical backbone and that it binds to three- and four-way junctions as well as to stably unpaired regions in double-stranded DNA. PARP-1 interactions with non-B DNA structures are functional and lead to its catalytic activation. DNA hairpins, cruciforms, and stably unpaired regions are all effective co-activators of PARP-1 auto-modification and poly(ADP-ribosyl)ation of histone H1 in the absence of free DNA ends. Enzyme kinetic analyses revealed that the structural features of non-B form DNA co-factors are important for PARP-1 catalysis activated by undamaged DNA. K0.5 constants for DNA co-factors, which are structurally different in the degree of base pairing and spatial DNA organization, follow the order: cruciform相似文献   

13.
14.
Poly (ADP-ribose) polymerase-1 (Parp1) plays a central role in the maintenance of genomic integrity and has been unequivocally associated to DNA base excision repair (BER) but its involvement in double-strand break (DSB) repair pathways remains unclear. In this work, using transgenic Parp1-deficient mice harbouring the lacZ reporter gene, we provide in vivo evidence that Parp1 contributes to the prevention of deletions/insertions in testis following an alkylation insult. In response to N-Methyl-N-Nitrosurea (MNU) treatment no significant difference in the mutant frequency (MF) in the liver and testis could be attributed to Parp1 status, given that both Parp1+/+ and Parp1−/− mice showed a similar significant increase in the overall MF. However, restriction analysis of MNU-induced mutants evidenced a shift in the distribution of mutations between deletions/insertions and point mutations in testis, but not in the liver, dependent on the Parp1 status. A significant higher frequency of deletions/insertions was observed in testis from Parp1−/− in comparison to Parp1+/+ mice, whereas point mutations were not significantly affected. Overall, our findings show that Parp1 participates in the prevention of deletions/insertions induced by methylating agents and that organ-specific factors may influence its capacity to protect against genotoxic damage.  相似文献   

15.
16.
17.
The centrosome plays a vital role in maintaining chromosomal stability. Known as the microtubule organizing center, the centrosome is involved in the formation of spindle poles during mitosis, which ensures the distribution of the correct number of chromosomes to daughter cells. Aberrant centrosome duplication could cause centrosome amplification and chromosomal instability. We have previously shown that poly(ADP-ribose) polymerase-1 (PARP-1) is important for centrosome function and chromosomal stability. In this study, we used PARP-1(+/+), PARP-1(+/-) and PARP-1(-/-) primary mouse embryonic fibroblasts and found that the level of PARP-1 gene dosage correlates with PARP activity and the in vivo level of poly(ADP-ribosyl)ation, which could explain the mechanism by which PARP-1 haploinsufficiency affects centrosome duplication and chromosomal stability. Our results emphasize that correct regulation of poly(ADP-ribosyl)ation levels in vivo is important for maintenance of proper centrosome duplication and chromosomal stability.  相似文献   

18.
The isoquinolinone-based tetracyclic compounds were designed and synthesized and their PARP-1 inhibitory activity was evaluated. Most of synthesized compounds showed fairly good activity. Also the most active compound 6 showed its activity on potentiation of anticancer agents, temozolamide and etoposide, by 1.7 times, respectively.  相似文献   

19.
A series of novel pyrrolocarbazoles was synthesized as potential PARP-1 inhibitors. Pyrrolocarbazole 1 was identified as a potent PARP-1 inhibitor (IC50 = 36 nM) from our internal database. Synthesis of analogs around this template with the aid of modeling studies led to the identification of the truncated imide 14. Compound 14 (IC50 = 40 nM), with deleted B-ring, was found to be an equipotent PARP-1 inhibitor.  相似文献   

20.
Toward specific functions of poly(ADP-ribose) polymerase-2   总被引:2,自引:0,他引:2  
Poly(ADP-ribose) polymerase-2 (PARP-2) belongs to a family of enzymes that catalyze poly(ADP-ribosyl)ation of proteins. PARP-1 and PARP-2 are so far the only PARP enzymes whose catalytic activity has been shown to be induced by DNA-strand breaks, providing strong support for key shared functions in the cellular response to DNA damage. Accordingly, clinical trials for cancer, using PARP inhibitors that target the conserved catalytic domain of PARP proteins, are now ongoing. However, recent data suggest unique functions for PARP-2 in specific processes, such as genome surveillance, spermatogenesis, adipogenesis and T cell development. Understanding these physiological roles might provide invaluable clues to the rational development and exploitation of specific PARP-2 inhibitor drugs in a clinical setting and the design of new therapeutic approaches in different pathophysiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号