首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A murein-bound form of prolipoprotein was found in the cell envelope fraction of globomycin-treated Escherichia coli B. We suggest therefore that proteolytic cleavage of prolipoprotein to mature lipoprotein is not essential for the transpeptidation of the lipoprotein to peptidoglycan.  相似文献   

2.
Two genetically engineered variants of the Bacillus licheniformis beta-lactamase gene were expressed in Escherichia coli. One variant coded for the exo-small mature enzyme without the signal peptide. The other coded for the exo-large mature enzyme preceded by 10, mostly polar, residues from an incomplete heterologous signal. As observed following the extraction by a lysozyme-EDTA treatment, the signal-less variant was exported to the periplasm with nearly 20% efficiency, whereas the variant with the N-terminal extension was translocated to a lesser degree; interestingly, nearly all of the former and half of the latter were extracted by osmotic shock, which may be of importance for our understanding of cellular compartments. The fact that a signal-less protein is translocated with substantial yields raises questions about the essential role of signal peptides for protein export. As folding and export are related processes, we investigated the folding in vitro of the two variants. No differences were found between them. In the absence of denaturant, they are completely folded, fully active and have a large DeltaG of unfolding. Under partially denaturing conditions they populate several partially folded states. The absence of significant amounts of a non-native state under native conditions makes a thermodynamic partitioning between folding and export less likely. In addition, kinetic measurements indicated that these B. licheniformis lactamases fold much faster than E. coli beta-lactamase. This behavior suggests that they are exported by a kinetically controlled process, mediated by one or more still unidentified interactions that slow folding and allow a folding intermediate to enter the export pathway.  相似文献   

3.
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.  相似文献   

4.
  总被引:2,自引:0,他引:2  
Adenosine and its analogue N6-phenylisopropyladenosine stimulated pyruvate dehydrogenase activity of isolated rat adipocytes. Maximal stimulation was obtained with concentrations between 50 and 100 mu M, with the effect decreasing at higher concentrations. The effects of insulin on this enzyme was modified by adenosine. The concentration of insulin (10 mu units/ml) that produced almost half-maximal stimulation, had little or no effect, when adenosine deaminase was present. Adenosine also enhanced the effect of suboptimal but not optimal concentrations of insulin. Thus, the mechanism of adenosine action on adipocyte pyruvate dehydrogenase could in some way be similar or related to that of insulin.  相似文献   

5.
Recombinant Escherichia coli harboring the l-arabinose isomerase (BLAI) from Bacillus licheniformis was used as a biocatalyst to produce l-ribulose in the presence of borate. Effects of substrate concentration, the borate to l-arabinose ratio, pH, and temperature on the conversion of l-arabinose to l-ribulose were investigated. l-Ribulose production was efficient when pH was higher than 9 and temperature was higher than 50 °C. Borate addition to the reaction mixture was essential for high conversion of l-arabinose to l-ribulose as it resulted in an equilibrium shift in favor of the product. Under the optimal conditions determined by response surface methodology, the E. coli harboring BLAI produced 375 g l−1 L-ribulose from 500 g l−1 l-arabinose at a reaction time of 60 min, corresponding to a conversion yield of 75% and productivity of 375 g l−1 h−1. When the resting recombinant E. coli cells were recycled, 85% of the yield was obtained even after seven cycles of reuse. The productivity and final concentration of l-ribulose obtained in the present study were the highest yet reported.  相似文献   

6.
Bacillus subtilis anaerobic respiration and fermentative growth capabilities were compared to two other facultative anaerobes, Bacillus licheniformis and Escherichia coli. In glycerol defined medium, B. subtilis grew with nitrate, but not nitrite or fumarate, while B. licheniformis grew with nitrate or fumarate, but not nitrite. Growth of E. coli occurred in glycerol defined medium with either nitrate, nitrite, or fumarate. In order to grow by fermentation, B. subtilis required both glucose and pyruvate, while B. licheniformis and E. coli were capable of using either glucose or pyruvate.  相似文献   

7.
Incubation of rat adipocytes with wortmannin, a potent and selective phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, completely blocked the antilipolytic action of insulin (IC50≈ 100 nM), the insulin-induced activation and phosphorylation of cGMP-inhibited cAMP phosphodiesterase (cGI-PDE) as well as the activation of the insulin-stimulated cGI-PDE kinase (IC50≈ 10–30 nM). No direct effects of the inhibitor on the insulin-stimulated cGI-PDE kinase, the cGI-PDE and the hormone-sensitive lipase were observed. These data suggest that activation of PI 3-kinase upstream of the insulin-stimulated cGI-PDE kinase in the antilipolytic insulin signalchain has an essential role for insulin-induced cGI-PDE activation/ phosphorylation and anti-lipolysis.  相似文献   

8.
We have previously shown that the penP Ser-27 prepenicillinase is processed into two forms, Ser-35-penicillinase and Asn-29 penicillinase. Two new penicillinase mutants, penP Ser-27 Pro-28 and penP Ser-27,23' (Pro-Asp)24', were derived from the penP Ser-27 mutant by oligonucleotide-directed site-specific mutagenesis. The penP Ser-27 Pro-28 mutant prepenicillinase was also processed into two forms, Ser-35-penicillinase and Gly-26-penicillinase. On the contrary, the penP Ser-27,23' (Pro-Asp)24' mutant prepenicillinase is unprocessed.  相似文献   

9.
The rates of lipolysis and lipogenesis in adipocytes, isolated from biopsy samples of subcutaneous fat, was assessed by estimation of glycerol release during a 30-min incubation, and of the incorporation of 14C-glucose into lipids during a 1-h incubation at 37 degrees C, respectively. The subjects were six highly-qualified, active endurance sportsmen, eight former endurance sportsmen of international class, and six untrained young men. In the active sportsmen the basal rate of lipolysis was about half of that in the previously-active sportsmen and the untrained subjects, but after the addition of adrenaline (10(-4) or 5 x 10(-4) mol.l-1) the lipolysis rate was the highest. No differences were observed in the lipolytic rates in the former sportsmen compared to the untrained subjects. Gases of a comparatively high level of lipogenesis were found in the trained subjects. The addition of insulin (9 microU.ml-1) to isolated adipocytes caused a significant augmentation of individual rates of lipogenesis in the active sportsmen and the untrained persons but not in the previously-active sportsmen. In comparison with the active sportsmen, the previously active sportsmen revealed an increased basal rate of lipolysis and a reduced sensitivity to the lipogenic action of insulin. These findings suggest that these changes may have had significance in avoiding an increase of adipose tissue after a decrease in energy expenditure due to a change in physical activity.  相似文献   

10.
11.
The structural genes for the entire bacitracin synthetase 2 (component II) and for a part of the putative bacitracin synthetase 3 (component III) from Bacillus licheniformis ATCC 10716 were cloned and expressed in Escherichia coli. A cosmid library of B. licheniformis DNA was constructed. The library was screened for the ability to produce bacitracin synthetase by in situ immunoassay using anti-bacitracin synthetase antiserum. A positive clone designated B-15, which has a recombinant plasmid carrying about a 32-kilobase insert of B. licheniformis DNA, was further characterized. Analysis of crude cell extract from B-15 by polyacrylamide gel electrophoresis and Western blotting (immunoblotting) showed that the extract contains two immunoreactant proteins with high molecular weight. One band with a molecular weight of about 240,000 comigrates with bacitracin synthetase 2; the other band is a protein with a molecular weight of about 300,000. Partial purification of the gene products encoded by the recombinant plasmid by gel filtration and hydroxyapatite column chromatography revealed that one gene product catalyzes L-lysine- and L-ornithine-dependent ATP-PPi exchange reactions which are characteristic of bacitracin synthetase 2, and the other product catalyzes L-isoleucine-, L-leucine, L-valine-, and L-histidine-dependent ATP-PPi exchange activities, suggesting the activities of a part of bacitracin synthetase 3. Subcloning experiments indicated that the structural gene for bacitracin synthetase 2 is located near the middle of the insert.  相似文献   

12.
Glutaminase or L-glutamine aminohydrolase (EC 3.5.1.2) is an enzyme that catalyzes the formation of glutamic acid and ammonium ion from glutamine. This enzyme functions in cellular metabolism of every organism by supplying nitrogen required for the biosynthesis of a variety of metabolic intermediates, while glutamic acid plays a role in both sensory and nutritional properties of food. So far there have been only a few reports on cloning, expression and characterization of purified glutaminases. Microbial glutaminases are enzymes with emerging potential in both the food and the pharmaceutical industries. In this research a recombinant glutaminase from Bacillus licheniformis (GlsA) was expressed in Escherichia coli, under the control of a ptac promoter. The recombinant enzyme was tagged with decahistidine tag at its C-terminus and could be conveniently purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The enzyme could be induced for efficient expression with IPTG, yielding approximately 26,000 units from 1-l shake flask cultures. The enzyme was stable at 30°C and pH 7.5 for up to 6h, and could be used efficiently to increase glutamic acid content when protein hydrolysates from soy and anchovy were used as substrates. The study demonstrates an efficient expression system for the production and purification of bacterial glutaminase. In addition, its potential application for bioconversion of glutamine to flavor-enhancing glutamic acid has been demonstrated.  相似文献   

13.
Summary The structural gene, pen, for the -lactamase of B. licheniformis has been cloned into a vector and shown to be expressed at a low rate in E. coli. The cloned pen gene appears to be expressed from a promoter within the fragment of B. licheniformis DNA, since its rate of expression is not affected by the presence of the phage repressor, the absence of the phage's positive-control functions, or the position or orientation of the gene within the phage genome.  相似文献   

14.
Abstract The gene coding for the thermostable α-amylase Bacillus licheniformis has been isolated from a direct shotgun in Escherichia coli using the bacteriophage lambda as a vector. The fragment containing the α-amylase gene has been sub-cloned in pBR322 and its restriction map determined. The α-amylase produced by the E. coli clones retained the thermostability of the B. licheniformis enzyme. Expression and properties of the gene product in E. coli and Bacillus subtilis have been examined.  相似文献   

15.
Insulin controls or alters glucose, protein, and fat metabolism as well as other cellular functions. Insulin binds to a specific receptor on the cell membrane initiating a protein phosphorylation cascade that controls glucose uptake and metabolism and long-term effects such as mitogenesis. This process also initiates insulin uptake and ultimate cellular metabolism in all insulin sensitive cells. The effects of insulin on other cellular metabolic properties have not been clearly related to this mechanism. Here we show that intracellular metabolism of insulin may be related to some aspects of insulin actions, specifically control of fat metabolism. A normal intracellular degradation product of insulin has been synthesized and tested for actions on fat turnover in cultured adipocytes. This 7-peptide, B-chain fragment (HLVEALY) inhibits both basal and stimulated lipolysis as measured by glycerol release, but does not inhibit FFA release because of a lack of effect on FFA reesterification in the adipocyte. HLVEALY also enhances insulin's effects on lipogenesis. This study shows that a fragment of insulin produced by the action of the insulin-degrading enzyme has both independent biological effects and interactions with insulin. This supports a biologically important effect of insulin metabolism and insulin degradation products on insulin action on non-glucose pathways.  相似文献   

16.
Atrial natriuretic peptide (ANP) was recently shown to promote triacylglycerol hydrolysis in human white adipocytes both in vitro and in vivo through a cGMP-dependent pathway. The ANP-stimulated lipolytic effect is known to be specific to primates. In this study, we compared the lipolytic effect of different natriuretic peptides obtained from several species, including ANP from human, rat, chicken, frog, and eel, brain natriuretic peptide (BNP) from porcine and rat, C-type natriuretic peptide (CNP) from human, chicken, and frog, Dendroaspis natriuretic peptide (DNP), urodilatin, and des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANP (C-ANP), on human and rat adipocytes. We also compared the amount of intracellular cGMP produced in both human and rat adipocytes that were treated with natriuretic peptides. Among these NPs, rat ANP, as well as porcine and rat BNP, DNP and urodilatin showed the ability to elevate intracellular cGMP and to stimulate lipolysis as human ANP. No natriuretic peptide showed the ability to stimulate lipolysis in rat adipocytes, though some of them induced significant elevation of intracelluar cGMP concentrations. These results suggest that ANP and BNP from species close to human have the ability to induce lipolysis in human adipocytes. Jiahua Yu and Yeon Jun Jeong contributed equally.  相似文献   

17.
18.
Alkaliphilic Bacillus penicillinase produced by Escherichia coli is distributed in several subcellular compartments according to cultivation conditions. The penicillinase that accumulated in particular subcellular fractions of E. coli grown under different conditions was purified and characterized. Periplasmic or extracellular penicillinase (24 kDa) was mature protein, indicating that the putative precursor (27 kDa) was processed at the correct amino acid residue, probably by signal peptidase I. Cytoplasmic penicillinase contained two unusual proteins (25 kDa) that are produced by proteolytic cleavage of the precursor within its signal sequence.  相似文献   

19.
We have previously shown that Bacillus licheniformis prepenicillinase is modified and processed to form membrane-bound penicillinase in Escherichia coli which contains N-acylglyceride-cysteine27 at the NH2 terminus. In the present study, we have constructed, by in vitro site-directed mutagenesis, two mutant penicillinase genes in which the modification site (the 27th cysteine residue in prepenicillinase) is either converted into serine (penPSer27) or is deleted along with the preceding four residues (Ala23 to Cys27, delta penP2327). The modification, processing, and subcellular localization of these two mutant penicillinases in E. coli cells were studied. Our results indicate that the delta penP2327 deletion mutant prepenicillinase is largely metabolically inert and the unmodified and uncleaved form is associated with the membrane fraction; a small fraction (about 7-9%) appears to contain glyceride-modified prepenicillinase (presumably at the Cys-21 position) which is not cleaved. In contrast, the Cys-27 in equilibrium Ser-27 point mutant prepenicillinase is processed into two forms which contain Asn-29 and Ser-35 at their NH2 termini, respectively, and the bulk of the processed penicillinase appears to be located in the peri-plasm. These results are discussed in terms of the substrate specificities of signal peptidases in E. coli.  相似文献   

20.
Mice and humans lacking caveolae due to gene knock-out or inactivating mutations of cavin-1/PTRF have numerous pathologies including markedly aberrant fuel metabolism, lipodystrophy, and muscular dystrophy. We characterized the physiologic/metabolic profile of cavin-1 knock-out mice and determined that they were lean because of reduced white adipose depots. The knock-out mice were resistant to diet-induced obesity and had abnormal lipid metabolism in the major metabolic organs of white and brown fat and liver. Epididymal white fat cells from cavin-1-null mice were small and insensitive to insulin and β-adrenergic agonists resulting in reduced adipocyte lipid storage and impaired lipid tolerance. At the molecular level, the lipolytic defects in white fat were caused by impaired perilipin phosphorylation, and the reduced triglyceride accumulation was caused by decreased fatty acid uptake and incorporation as well as the virtual absence of insulin-stimulated glucose transport. The livers of cavin-1-null mice were mildly steatotic and did not accumulate more lipid after high-fat feeding. The brown adipose tissues of cavin-1-null mice exhibited decreased mitochondria protein expression, which was restored upon high fat feeding. Taken together, these data suggest that dysfunction in fat, muscle, and liver metabolism in cavin-1-null mice causes a pleiotropic phenotype, one apparently identical to that of humans lacking caveolae in all tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号