首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bose K  Pop C  Feeney B  Clark AC 《Biochemistry》2003,42(42):12298-12310
We have examined the enzymatic activity of an uncleavable procaspase-3 mutant (D9A/D28A/D175A), which contains the wild-type catalytic residues in the active site. The results are compared to those for the mature caspase-3. Although at pH 7.5 and 25 degrees C the K(m) values are similar, the catalytic efficiency (k(cat)) is approximately 130-fold lower in the zymogen. The mature caspase-3 demonstrates a maximum activity at pH 7.4, whereas the maximum activity of procaspase-3 occurs at pH 8.3. The pK(a) values of both catalytic groups, H121 and C163, are shifted to higher pH for procaspase-3. We developed limited proteolysis assays using trypsin and V8 proteases, and we show that these assays allow the examination of amino acids in three of five active site loops. In addition, we examined the fluorescence emission of the two tryptophanyl residues in the active site over the pH range of 2.5-9 as well as the response to several quenching agents. Overall, the data suggest that the major conformational change that occurs upon maturation results in formation of the loop bundle among loops L4, L2, and L2'. The pK(a) values of both catalytic groups decrease as a result of the loop movements. However, loop L3, which comprises the bulk of the substrate binding pocket, does not appear to be unraveled and solvent-exposed, even at lower pH.  相似文献   

2.
人双专一性磷酸酶活性位点Cys^124附近精氨酸突变及功能   总被引:1,自引:0,他引:1  
为研究人双专一性磷酸酶活性位点Cys12 4 附近 3个带正电的精氨酸对酶催化功能的影响 ,用QuikChange定点突变方法获得 6个突变体 :R12 5L、R130 L、R130 K、R130 L/S131A、R158K和R158L。将含突变基因的重组质粒转化大肠杆菌菌株BL2 1(DE3) ,经IPTG诱导表达获得的目的蛋白质均以可溶形式存在。通过镍离子亲和层析纯化得到纯度大于 90 %的蛋白质。对人痘苗病毒H1相关磷酸酶 (VHR)及其突变体进行稳态动力学参数和竞争性抑制常数Ki 的测定 ,结果显示上述Arg130 和Arg158突变体的kcat/Km 值都较野生型有大幅度下降 ,而Ki 值有明显上升 ,表明 130和 15 8位的精氨酸是VHR活性所必需 ,而且可能与底物上带负电的磷酸基团结合有关。另外 ,单突变体R130 L和双突变体R130 L/S131A之间的kcat值相差很小 ,提示Arg130 单点突变后可能破坏了Ser131与Cys12 4 间的氢键。再者 ,R12 5L、R130 L和R158L突变体都降低了砷酸盐结合亲和性 ,暗示这 3个精氨酸残基侧链上的正电荷可能有助于底物与酶的结合。  相似文献   

3.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

4.
Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the K(m) value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher K(m) for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was approximately 3% compared to wild-type CPO, with a threefold increase in the K(m) value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation.  相似文献   

5.
The solution structure of the ternary MutT enzyme-Mg(2+)-8-oxo-dGMP complex showed the proximity of Asn119 and Arg78 and the modified purine ring of 8-oxo-dGMP, suggesting specific roles for these residues in the tight and selective binding of this nucleotide product [Massiah, M. A., Saraswat, V., Azurmendi, H. F., and Mildvan, A. S. (2003) Biochemistry 42, 10140-10154]. These roles are here tested by mutagenesis. The N119A, N119D, R78K, and R78A single mutations and the R78K/N119A double mutant showed very small effects on k(cat) (相似文献   

6.
Glutathione S-transferases (GSTs) are involved in detoxification of xenobiotic compounds and in the biosynthesis of important metabolites. All GSTs activate glutathione (GSH) to GS(-); in many GSTs, this is accomplished by a Tyr at H-bonding distance from the sulfur of GSH. The high-resolution structure of GST from Schistosoma haematobium revealed that the catalytic Tyr occupies two alternative positions, one external, involving a pi-cation interaction with the conserved Arg21, and the other inside the GSH binding site. The interaction with Arg21 lowers the pK(a) of the catalytic Tyr10, as required for catalysis. Examination of several other GST structures revealed the presence of an external pocket that may accommodate the catalytic Tyr, and suggested that the change in conformation and acidic properties of the catalytic Tyr may be shared by other GSTs. Arginine and two other residues of the external pocket constitute a conserved structural motif, clearly identified by sequence comparison.  相似文献   

7.
Antibody 4C6 efficiently catalyzes a cationic cyclization reaction. Crystal structures of the antibody 4C6 Fab in complex with benzoic acid and in complex with its eliciting hapten were determined to 1.30A and 2.45A resolution, respectively. These crystal structures, together with computational analysis, have elucidated a possible mechanism for the monocyclization reaction. The hapten complex revealed a combining site pocket with high shape complementarity to the hapten. This active site cleft is dominated by aromatic residues that shield the highly reactive carbocation intermediates from solvent and stabilize the carbocation intermediates through cation-pi interactions. Modeling of an acyclic olefinic sulfonate ester substrate and the transition state (TS) structures shows that the chair-like transition state is favored, and trapping by water directly produces trans-2-(dimethylphenylsilyl)-cyclohexanol, whereas the less favored boat-like transition state leads to cyclohexene. The only significant change observed upon hapten binding is a side-chain rotation of Trp(L89), which reorients to form the base of the combining site. Intriguingly, a benzoic acid molecule was sequestered in the combining site of the unliganded antibody. The 4C6 active site was compared to that observed in a previously reported tandem cyclization antibody 19A4 hapten complex. These cationic cyclization antibodies exhibit convergent structural features with terpenoid cyclases that appear to be important for catalysis.  相似文献   

8.
The crystal structures of four related Fab fragments of a family of catalytic antibodies displaying differential levels of esterase activity have been solved in the presence and in the absence of the transition-state analogue (TSA) that was used to elicit the immune response. The electron density maps show that the TSA conformation is essentially identical, with limited changes on hapten binding. Interactions with the TSA explain the specificity for the D rather than the L-isomer of the substrate. Differences in the residues in the hapten-binding pocket, which increase hydrophobicity, appear to correlate with an increase in the affinity of the antibodies for their substrate. Analysis of the structures at the active site reveals a network of conserved hydrogen bond contacts between the TSA and the antibodies, and points to a critical role of two conserved residues, HisL91 and LysH95, in catalysis. However, these two key residues are set into very different contexts in their respective structures, with an apparent direct correlation between the catalytic power of the antibodies and the complexity of their interactions with the rest of the protein. This suggests that the catalytic efficiency may be controlled by contacts arising from a second sphere of residues at the periphery of the active site.  相似文献   

9.
During turnover, the catalytic tyrosine residue (Tyr10) of the sigma class Schistosoma haematobium wild-type glutathione-S-transferase is expected to switch alternately in and out of the reduced glutathione-binding site (G-site). The Tyrout10 conformer forms a pi-cation interaction with the guanidinium group of Arg21. As in other similar glutathione-S-transferases, the catalytic Tyr has a low pKa of 7.2. In order to investigate the catalytic role of Tyr10, and the structural and functional roles of Arg21, we carried out structural studies on two Arg21 mutants (R21L and R21Q) and a Tyr10 mutant, Y10F. Our crystallographic data for the two Arg21 mutants indicate that only the Tyrout10 conformation is populated, thereby excluding a role of Arg21 in the stabilisation of the out conformation. However, Arg21 was confirmed to be catalytically important and essential for the low pKa of Tyr10. Upon comparison with structural data generated for reduced glutathione-bound and inhibitor-bound wild-type enzymes, it was observed that the orientations of Tyr10 and Arg35 are concerted and that, upon ligand binding, minor rearrangements occur within conserved residues in the active site loop. These rearrangements are coupled to quaternary rigid-body movements at the dimer interface and alterations in the localisation and structural order of the C-terminal domain.  相似文献   

10.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

11.
The flavoprotein nitroalkane oxidase (NAO) catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones. The enzyme is a homologue of acyl-CoA dehydrogenase. Asp402 in NAO has been proposed to be the active site base responsible for removing the substrate proton in the first catalytic step; structurally it corresponds to the glutamate which acts as the base in medium chain acyl-CoA dehydrogenase. In the active site of NAO, the carboxylate of Asp402 forms an ionic interaction with the side chain of Arg409. The R409K enzyme has now been characterized kinetically and structurally. The mutation results in a decrease in the rate constant for proton abstraction of 100-fold. Analysis of the three-dimensional structure of the R409K enzyme, determined by X-ray crystallography to a resolution of 2.65 A, shows that the critical structural change is an increase in the distance between the carboxylate of Asp402 and the positively charged nitrogen in the side chain of the residue at position 409. The D402E mutation results in a smaller decrease in the rate constant for proton abstraction of 18-fold. The structure of the D402E enzyme, determined at 2.4 A resolution, shows that there is a smaller increase in the distance between Arg409 and the carboxylate at position 402, and the interaction of this residue with Ser276 is perturbed. These results establish the critical importance of the interaction between Asp402 and Arg409 for proton abstraction by nitroalkane oxidase.  相似文献   

12.
Jia Y  Lu Z  Huang K  Herzberg O  Dunaway-Mariano D 《Biochemistry》1999,38(43):14165-14173
PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed.  相似文献   

13.
Bienvenue DL  Gilner DM  Davis RS  Bennett B  Holz RC 《Biochemistry》2003,42(36):10756-10763
The catalytic and structural properties of divalent metal ion cofactor binding sites in the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. Co(II)-substituted DapE enzyme was 25% more active than the Zn(II)-loaded form of the enzyme. Interestingly, Mn(II) can activate DapE, but only to approximately 20% of the Zn(II)-loaded enzyme. The order of the observed k(cat) values are Co(II) > Zn(II) > Cd(II) > Mn(II) >Ni(II) approximately equal Cu(II) approximately equal Mg(II). DapE was shown to only hydrolyze L,L-N-succinyl-diaminopimelic acid (L,L-SDAP) and was inactive toward D,L-, L,D-, and D,D-SDAP. DapE was also inactive toward several acetylated amino acids as well as D,L-succinyl aminopimelate, which differs from the natural substrate, L,L-SDAP, by the absence of the amine group on the amino acid side chain. These data imply that the carboxylate of the succinyl moiety and the amine form important interactions with the active site of DapE. The affinity of DapE for one versus two Zn(II) ions differs by nearly 2.2 x 10(3) times (K(d1) = 0.14 microM vs K(d2) = 300 microM). In addition, an Arrhenius plot was constructed from k(cat) values measured between 16 and 35 degrees C and was linear over this temperature range. The activation energy for [ZnZn(DapE)] was found to be 31 kJ/mol with the remaining thermodynamic parameters calculated at 25 degrees C being DeltaG(++) = 64 kJ/mol, DeltaH(++) = 28.5 kJ/mol, and DeltaS(++) = -119 J mol(-1) K(-1). Electronic absorption and EPR spectra of [Co_(DapE)] and [CoCo(DapE)] indicate that the first Co(II) binding site is five-coordinate, while the second site is octahedral. In addition, any spin-spin interaction between the two Co(II) ions in [CoCo(DapE)] is very weak. The kinetic and spectroscopic data presented herein suggest that the DapE from H. influenzae has similar divalent metal binding properties to the aminopeptidase from Aeromonas proteolytica (AAP), and the observed divalent metal ion binding properties are discussed with respect to their catalytic roles in SDAP hydrolysis.  相似文献   

14.
The crystal structure of the ternary complex of hexameric purine nucleoside phosphorylase (PNP) from Escherichia coli with formycin A derivatives and phosphate or sulphate ions is determined at 2.0 A resolution. The hexamer is found as a trimer of unsymmetric dimers, which are formed by pairs of monomers with active sites in different conformations. The conformational difference stems from a flexible helix (H8: 214-236), which is continuous in one conformer, and segmented in the other. With the continuous helix, the entry into the active site pocket is wide open, and the ligands are bound only loosely ("open" or "loose binding" conformation). By segmentation of the helix (H8: 214-219 and H8': 223-236, separated by a gamma-turn), the entry into the active site is partially closed, the pocket is narrowed and the ligands are bound much more tightly ("closed" or "tight binding" conformation). Furthermore, the side-chain of Arg217 is carried by the moving helix into the active site. This residue, conserved in all homologous PNPs, plays an important role in the proposed catalytic mechanism. In this mechanism, substrate binding takes place in the open, and and the catalytic action occurs in the closed conformation. Catalytic action involves protonation of the purine base at position N7 by the side-chain of Asp204, which is initially in the acid form. The proton transfer is triggered by the Arg217 side-chain which is moved by the conformation change into hydrogen bond distance to Asp204. The mechanism explains the broad specificity of E. coli PNP, which allows 6-amino as well as 6-oxo-nucleosides as substrates. The observation of two kinds of binding sites is fully in line with solution experiments which independently observe strong and weak binding sites for phosphate as well as for the nucleoside inhibitor.  相似文献   

15.
Studies of ligand binding to acetylcholinesterase (AChE) have demonstrated two sites of interaction. An acyl-enzyme intermediate is formed at the acylation site, and catalytic activity can be inhibited by ligand binding to a peripheral site. The three-dimensional structures of AChE-ligand complexes reveal a narrow and deep active site gorge and indicate that ligands specific for the acylation site at the base of the gorge must first traverse the peripheral site near the gorge entrance. In recent studies attempting to clarify the role of the peripheral site in the catalytic pathway for AChE, we showed that ligands which bind specifically to the peripheral site can slow the rates at which other ligands enter and exit the acylation site, a feature we called steric blockade [Szegletes, T., Mallender, W. D., and Rosenberry, T. L. (1998) Biochemistry 37, 4206-4216]. We also demonstrated that cationic substrates can form a low-affinity complex at the peripheral site that accelerates catalytic hydrolysis at low substrate concentrations but results in substrate inhibition at high concentrations because of steric blockade of product release [Szegletes, T., Mallender, W. D., Thomas, P. J., and Rosenberry, T. L. (1999) Biochemistry 38, 122-133]. In this report, we demonstrate that a key residue in the human AChE peripheral site with which the substrate acetylthiocholine interacts is D74. We extend our kinetic model to evaluate the substrate affinity for the peripheral site, indicated by the equilibrium dissociation constant K(S), from the dependence of the substrate hydrolysis rate on substrate concentration. For human AChE, a K(S) of 1.9+/-0.7 mM obtained by fitting this substrate inhibition curve agreed with a K(S) of 1.3+/-1.0 mM measured directly from acetylthiocholine inhibition of the binding of the neurotoxin fasciculin to the peripheral site. For Torpedo AChE, a K(S) of 0.5+/- 0.2 mM obtained from substrate inhibition agreed with a K(S) of 0.4+/- 0.2 mM measured with fasciculin. Introduction of the D72G mutation (corresponding to D74G in human AChE) increased the K(S) to 4-10 mM in the Torpedo enzyme and to about 33 mM in the human enzyme. While the turnover number k(cat) was unchanged in the human D74G mutant, the roughly 20-fold decrease in acetylthiocholine affinity for the peripheral site in D74G resulted in a corresponding decrease in k(cat)/K(app), the second-order hydrolysis rate constant, in the mutant. In addition, we show that D74 is important in conveying to the acylation site an inhibitory conformational effect induced by the binding of fasciculin to the peripheral site. This inhibitory effect, measured by the relative decrease in the first-order phosphorylation rate constant k(OP) for the neutral organophosphate 7-[(methylethoxyphosphonyl)oxy]-4-methylcoumarin (EMPC) that resulted from fasciculin binding, decreased from 0.002 in wild-type human AChE to 0.24 in the D74G mutant.  相似文献   

16.
Isoaspartyl dipeptidase (IAD) is a member of the amidohydrolase superfamily and catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. Structural studies of the wild-type enzyme have demonstrated that the active site consists of a binuclear metal center positioned at the C-terminal end of a (beta/alpha)(8)-barrel domain. Steady-state kinetic parameters for the hydrolysis of beta-aspartyl dipeptides were obtained at pH 8.1. The pH-rate profiles for the hydrolysis of beta-Asp-Leu were obtained for the Zn/Zn-, Co/Co-, Ni/Ni-, and Cd/Cd-substituted forms of IAD. Bell-shaped profiles were observed for k(cat) and k(cat)/K(m) as a function of pH for all four metal-substituted forms. The pK(a) of the group that must be unprotonated for catalytic activity varied according to the specific metal ion bound in the active site, whereas the pK(a) of the group that must be protonated for catalytic activity was relatively independent of the specific metal ion present. The identity of the group that must be unprotonated for catalytic activity was consistent with the hydroxide that bridges the two divalent cations of the binuclear metal center. The identity of the group that must be protonated for activity was consistent with the free alpha-amino group of the dipeptide substrate. Kinetic constants were obtained for the mutant enzymes at conserved residues Glu77, Tyr137, Arg169, Arg233, Asp285, and Ser289. The catalytic properties of the wild-type and mutant enzymes, coupled with the X-ray crystal structure of the D285N mutant complexed with beta-Asp-His, are consistent with a chemical reaction mechanism for the hydrolysis of dipeptides that is initiated by the polarization of the amide bond via complexation to the beta-metal ion of the binuclear metal center. Nucleophilic attack by the bridging hydroxide is facilitated by abstraction of its proton by the side chain carboxylate of Asp285. Collapse of the tetrahedral intermediate and cleavage of the carbon-nitrogen bond occur with donation of a proton from the protonated form of Asp285.  相似文献   

17.
The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.  相似文献   

18.
Phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri catalyzes the nicotinamide adenine dinucleotide-dependent oxidation of phosphite to phosphate. The enzyme belongs to the family of D-hydroxy acid dehydrogenases (DHDHs). A search of the protein databases uncovered many additional putative phosphite dehydrogenases. The genes encoding four diverse candidates were cloned and expressed, and the enzymes were purified and characterized. All oxidized phosphite to phosphate and had similar kinetic parameters despite a low level of pairwise sequence identity (39-72%). A recent crystal structure identified Arg301 as a residue in the active site that has not been investigated previously. Arg301 is fully conserved in the enzymes shown here to be PTDHs, but the residue is not conserved in other DHDHs. Kinetic analysis of site-directed mutants of this residue shows that it is important for efficient catalysis, with an ~100-fold decrease in k(cat) and an almost 700-fold increase in K(m,phosphite) for the R301A mutant. Interestingly, the R301K mutant displayed a slightly higher k(cat) than the parent PTDH, and a more modest increase in K(m) for phosphite (nearly 40-fold). Given these results, Arg301 may be involved in the binding and orientation of the phosphite substrate and/or play a catalytic role via electrostatic interactions. Three other residues in the active site region that are conserved in the PTDH orthologs but not DHDHs were identified (Trp134, Tyr139, and Ser295). The importance of these residues was also investigated by site-directed mutagenesis. All of the mutants had k(cat) values similar to that of the wild-type enzyme, indicating these residues are not important for catalysis.  相似文献   

19.
TfdA is an Fe(II)- and alpha-ketoglutarate- (alphaKG-) dependent dioxygenase that hydroxylates the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) producing a hemiacetal that spontaneously decomposes to 2,4-dichlorophenol and glyoxylate. On the basis of a recently published TfdA structural model [Elkins et al. (2002) Biochemistry 41, 5185-5192], His214, Lys71, Arg278, and the backbone amide of Ser117 are suggested to bind the 2,4-D carboxylate; Lys95 and possibly Lys71 are hypothesized to interact with the 2,4-D ether atom; and Arg274 and Thr141 are suspected to bind alphaKG. TfdA variants with substitutions at these and other positions were purified and characterized in order to explore the roles of these residues in catalysis. The K71L, K71Q, K95L, K95Q, R274Q, R274L, and R278Q variants exhibited significantly increased 2,4-D K(m), alphaKG K(m), and alphaKG K(d) values, consistent with their proposed roles in substrate binding. A protease-sensitive site was successfully eliminated in the R78Q variant, which also exhibited decreased affinity for 2,4-D. In contrast, the Y81F, Y126F, T141V, Y169F, and Y244F variants showed only modest changes in their kinetics. An observed 4-fold lower K(m) of the K95L variant compared to wild-type protein with the alternative substrate 2,4-dichlorocinnamic acid provided additional evidence for an interaction between Lys95 and the 2,4-D ether atom. Phenylpropiolic acid was identified as a mechanism-based inactivator of the enzyme [K(i) = 38.1 +/- 6.0 microM and k(inact)(max) = 2.3 +/- 0.1 min(-1)]. This acetylenic compound covalently modifies a peptide (166-AEHYALNSR-174) that is predicted to form one side of the substrate-binding pocket. The K95L variant of TfdA was not inactivated by phenylpropiolic acid, providing added support that Lys95 is present at the active site. These results support the identity of suspected substrate-binding residues derived from structural modeling studies and extend our understanding of the oxidative chemistry carried out by TfdA.  相似文献   

20.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号