首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and dormancy as affected by photoperiod and temperature have been studied in Norway spruce ecotypes of different latitudinal and altitudinal origin. First-year seedlings were used. In all ecotypes apical growth cessation and terminal bud formation occurred within 2 weeks after exposure to SD at temperatures of 18 to 24°C. At lower temperatures or at near-critical photoperiods the response was delayed. The critical photoperiod for apical growth cessation varied from 21 hours in ecotype Steinkjer, Norway (64°N) to about 15 hours in ecotype Lankowitz, Austria (47°04′N). High-elevation ecotypes also had longer critical pholoperiods than low-elevation ecotypes from the same latitude. A detectable growth depression resulted from as little as 1 or 2 SDs of 10 hours, and with 4 or more SDs apical growth cessation took place. In contrast to the situation in the shoot, root growth was not affected by photoperiod. Accordingly, the top:root ratio is drastically affected by photoperiod. The critical photoperiod for cambial growth was shorter than that for apical growth in all ecotypes and cambial growth cessation was delayed for several weeks compared with cessation of apical growth. A transition to formation of late-wood tracheids with thick walls and narrow lumens took place upon exposure to SD. The photoperiodic effects were significantly modified by temperature, but the critical photoperiods were only slightly changed by temperature in the range of 12 to 24°C. However, a 10-hour “night” at 4°C caused growth cessation in continuous light in four ecotypes tested. Temperature optimum for apical growth under non-limiting photoperiods (24 hours) was 21°C in all ecotypes, but with little difference among 18,21 and 24°C. The Q10 for apical growth was 3.5 in the temperature range 12 to 18°C. The growth potential as determined in 24-hour photoperiods was not significantly different among the various ecotypes except for one northern eco-type which was clearly inferior to the others. However, the growth of ecotype Steinkjer (64°N) was greatly suppressed even by the long midsummer days at 59°40′N, thus demonstrating the misleading impression one gets of the growth potential of northern ecotypes when they are moved southwards.  相似文献   

2.
Summary Vegetative growth of two ecotypes (lat. 78° 15N and 69°37N) of Salix polaris L. was studied in phytotron experiments. Dormancy of the winter buds was broken by chilling at 0.5°C for 14 to 42 days. Chilling requirement increased with decreasing growth temperature. The optimum temperature for bud break and shoot growth was about 15°C for both ecotypes. Cessation of apical shoot growth and abscission of shoot tip was not prevented by long photoperiods. However, at high temperature, 15°C or more, and in 18 to 24 h photoperiod, two or three growth flushes occurred frequently in both ecotypes. Leaf abscission in the arctic ecotype from lat. 78°N was not affected by photoperiod when grown at 6°C, but was stimulated by short photoperiod when grown at 15°C. In the ecotype from lat. 69°N leaf abscission was enhanced by short photoperiod even at 6°C.  相似文献   

3.
Apical Growth Cessation and Shoot Tip Abscission in Salix   总被引:1,自引:0,他引:1  
Time course of apical shoot growth and shoot tip abortion in northern ecotypes (lat. 69°39′N, long. 18°37′E) of Salix pentandra and S. caprea have been investigated. In trees more than 15 years old growing under natural climatic conditions apical growth cessation and shoot tip abortion normally occurred in June-July when the day length still was 24 h. Application of GA3, in spring to the apex effectively delayed growth cessation and shoot tip abortion. Application of kinetin was without effect. First-year seedlings of both species grew continuously at temperatue of 9 to 24°C in 24 h photoperiod. Short days induced apical growth cessation, but two to four (S. pentandra) or three to five (S. caprea) weeks of 12 h photoperiod were required to stop the elongation growth. The results indicated that the critical photoperiod for apical growth cessation in the used ecotype of S. pentandra was 16 to 18 h at 18°C. Short days had a minor effect only on the formation of apical leaf primordia in small seedlings. Development of axillary buds and radial growth were stimulated by short days when compared with long days. Small seedlings of both species (3 to 8 cm high at the start) formed terminal buds in short days, but in large seedlings (more than about 15 cm high) apical growth cessation was accompanied by shoot tip abortion. Abscisic acid applied to the apex or through a leaf did not induce growth cessation in S. pentandra seedlings grown in continuous light. The growth retardants CCC, B-9 and Phosphon D reduced growth rate under continuous light and induced shoot tip abortion in some plants. The effect of CCC was counteracted by GA3. Apical growth cessation in short days was significantly delayed by a single GA1 application.  相似文献   

4.
Apical growth cessation as affected by photoperiod and temperature has been studied in seedlings of two latitudinal ecotypes of Salix and Betula. The critical photoperiod for apical growth cessation at constant temperatures of 15 and 21°C was about 22 h for a northern (69°C39′N) and about 15–16 h for a southern (59°C40′N) ecotype of Salix pentandra. Fluctuating day/night temperatures (21°C/9°C, 15°C/6°C) induced apical growth cessation in northern ecotypes even at 24–h photoperiod. Disagreements in critical photoperiods found in various studies are discussed.  相似文献   

5.
High production costs due to low growth rate in vitro and high labour costs are among factors limiting commercial application of micropropagation techniques. The low growth rate could be due to unfavourable or sub-optimal environmental and chemical conditions of the cultures. The effects of temperature, photoperiod and culture vessel size were investigated on adventitious shoot production of Huernia hystrix. There were significant increases in shoot proliferation with increased temperature in cultures maintained under a 16 h photoperiod. Slow growth observed at low temperatures (15 and 20°C) offers a potential strategy for cost-effective in vitro storage of H. hystrix germplasm. The maximum adventitious shoots produced per explant and percentage of explants producing shoots (4.2 ± 0.74 and 94% respectively) were observed in cultures maintained at 35°C, the optimum temperature for photosynthesis in plants possessing crassulacean acid metabolism (CAM). The nocturnal accumulation of organic acids in cultures incubated under a 16 h photoperiod further suggest the presence of CAM in this species. On the other hand, cultures kept under continuous light appear to shift to a C-3 photosynthetic pathway. There was a significant decrease in fresh weight of adventitious shoots regenerated per explant as temperature increased. The use of larger culture vessels further increased the shoot proliferation to 5.6 shoots per explant with a potential production of 3,429 shoots per m2 in the growth room compared to 2,750 shoots per m2 using culture tubes.  相似文献   

6.
Both the single and interactive effects of irradiance and photoperiod on a worldwide charophyte species, Chara vulgaris L., were investigated in a greenhouse experiment. Under high light intensity, plants exhibited shortened shoot, compact canopy and low Chl a/Caro. In contrast, elongated shoot, expanded canopy and low Chl a/Chl b corresponded to low light intensity. In addition, both ash mass ratio and relative growth rate (RGR) were positively related to light intensity. The effect of photoperiod on plants was relatively complex. Although photoperiod did not affect morphological characters, an increased photoperiod significantly decreased Chl a/Chl b and Chl a/Caro ratios. Two-way analysis of variance (ANOVA) analysis indicated that significant interaction of irradiance and photoperiod was present on ash mass ratio, RGR, Chl a/Chl b, Chl a/Caro and Chl (a + b)/Caro ratios. The high RGR found for 50% sunlight, L:D 16:8 (50/16) conditions along with the significant interaction of irradiance and photoperiod on RGR indicated that the effect of irradiance was more important than photoperiod for plant growth. And finally, both irradiance and photoperiod had positive effects on the emergence of sex organs (♂♀) and the maturation of oospores, except that increased photoperiod did not accelerate the maturation of oospores. In summary, for both plant growth and reproduction, C. vulgaris was able to acclimate morphologically and physiologically to different irradiance levels and photoperiods. This study can partly explain the broad geographic distribution of C. vulgaris. Handling editor: S. M. Thomaz  相似文献   

7.
The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.  相似文献   

8.
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.  相似文献   

9.
The extent of natural variation among wild type Arabidopsis thaliana L. Heynh for response to environmental stimuli that affect flowering is poorly documented. The effects of photoperiod and vernalization on the number of rosette leaves at the time of anthesis was measured for 32 Arabidopsis ecotypes. All ecotypes were vernalized 24 days at 4 C under continuous illumination. Vernalized and nonvernalized plants were transplanted into 8- (short-day) and 20-hour (long-day) photoperiods in controlled environment growth chambers. Two ecotypes failed to flower after 110 days. Mean leaf number was less for all ecotypes under long day compared to short day. Sixteen ecotypes responded to vernalization; eight had reduced leaf number regardless of photoperiod, and eight had reduced leaf number only under short day. Two ecotypes required vernalization to flower in this study. For three ecotypes, vernalization and short day resulted in a reduction in leaf number whereas vernalization and long day resulted in increased leaf number. Documentation of the effects and interactions of photoperiod and vernalization across many ecotypes provides a broader range of described natural variation for genetic and physiologic study.  相似文献   

10.
The influx of K+(86Rb+) into intact roots of rye (Secale cereale L. cv. Rheidal) exposed to a differential temperature (DT) between the root (8° C) and shoot (20° C) is initially reduced compared with warm-grown (WG) controls with both shoot and root maintained at 20° C. Over a period of 3 d, however, K+-influx rates into DT plants are restored to levels similar to or greater than those of the WG controls, the absolute rates of K+ influx being strongly dependent upon the shoot/root ratio. Acclimation in DT plants results in a reduction of K+ influx into the apical (0–2 cm) region of the seminal root which is associated with a compensatory increase in K+ influx into the more mature, basal regions of the root. Values of V max and apparent K m for K+ influx into DT plants were similar to those for WG plants at assay temperatures of 8° C and 20° C except for an increase in the apparent K m at 8° C. The influx of K+ from solutions containing 0.6 mol·m-3 K+ into both WG and DT plants was found to be linearly related to assay temperature over the range 2–27° C, and the temperature sensitivity of K+ influx to be dependent upon shoot/root ratio. At high shoot/root ratios, the ratio of K+ influx at 20° C:K+ influx at 8° C for WG plants approached a minimum value of 1.9 whereas that for DT plants approached unity indicating that K+ influx into DT plants has a large temperature-insensitive component. Additionally, when plants were grown in solutions of low potassium concentration, K+ influx into DT plants was consistently greater than that into WG plants, in spite of having a greater root potassium concentration ([K+]int). This result indicates some change in the regulation of K+ influx by [K+]int in plants exposed to low root temperatures. We suggest that K+ influx into rye seedlings exposed to low root temperatures is regulated by the increased demand placed on the root system by a proportionally larger shoot and that the acclimation of K+ influx to low temperatures may be the result of an increased hydraulic conductivity of the root system.Abbreviations DT differential temperature pretreatment - [K+]int root potassium concentration - [K+]ext potassium concentration of nutrient medium - WG warm-grown pretreatment  相似文献   

11.
R. H. Groves  A. Lang 《Planta》1970,91(3):212-219
Summary Seedlings of Scrophularia marilandica were grown at different combinations of day/night temperature and photoperiod under controlled conditions. The species flowered in long days. The stems of plants grown at low temperature and short photoperiod failed to elongate. Treatment with gibberellic acid (GA3) simulated the effect of increasing temperature and photoperiod and caused stem elongation in plants which would otherwise not have elongated. Application of GA3 to plants grown at high temperature and long photoperiod resulted in increased stem elongation and flowering. The growth retardant (2-chloroethyl)trimethylammonium chloride (CCC) had little effect on rosette plants grown at low temperature and short photoperiod. Application of CCC to +GA3 plants grown at a higher temperature and long photoperiod gave a significant increase in stem height. The interaction between temperature and applied GA is described in an experiment using plants grown at high and low temperatures for varying periods of time.This work was supported by National Science Foundation Grant GB 17483.  相似文献   

12.
Sunflower plants (Helianthus annuus L. cv Sun-Gro 380) grown in nutrient solutions with different K+ levels were used to study the effect of potassium status on water uptake, Na+ uptake and Na+ accumulation in the shoot. Changes in nutrient potassium levels induced evident differences in internal potassium content. When both low and normal-K+ plants were exposed to 22 °C and salinity conditions (25 or 50 mM NaCl) during a short time period (9 h), water uptake in low-K+ plants was greater than in normal-K+ plants. In addition, K+ starvation favoured the Na+ uptake and the Na+ accumulation both in the root and in the shoot. When the plants were exposed to heat stress by a sharp increase of the temperature to 32 °C during the same period of time, the stimulating effect of K+ starvation on the water uptake was even greater. The high temperature increased Na+ uptake in both types of plants, but the Na+ accumulation in the shoot was only favoured in low-K+ plants. The results suggest that Na+ accumulation in the shoot is more dependent on the water uptake in low-K+ plants than in normal-K+ plants, and this effect could explain the greatest susceptibility to the salinity in K+-starved plants under high transpiration conditions, which are typical in dry climates.  相似文献   

13.
We have examined shoot and root growth and the concentration of carbohydrates in seedlings of a northern (67°N) and a southern (61°N) ecotype of Betula pendula Roth. cultivated at root-zone temperatures of 2, 6, 12 and 17°C. Three hydroponic experiments were conducted in controlled environments. We used three different pretreatments before seedlings were subjected to the experimental temperature treatments. Actively growing seedlings that were acclimated to the hydroponic solution for 3 weeks at a root temperature of 17°C, continued to grow at all the experimental temperatures, with an expected increase in growth from 2 to 17°C. However, if we started with ecodormant cold stored plants or used seedlings grown actively in perlite, no growth was observed at 2°C and only minor growth was found at 6°C. The highest root temperature always produced the best growth. The concentration of nonstructural carbohydrates was higher in seedlings grown at 2°C than at 17°C, and this is probably due to extensive incorporation of carbohydrates into cell walls and other structural elements at 17°C. We found no evidence for differences between the two ecotypes in root growth, in timing of bud burst, but shoot growth terminated in the northern ecotype in the first experiment because the natural photoperiod was below the critical value. Our study highlights the importance of post-transplantation stress (planting check) related to root growth, and that root threshold temperatures may change according to the way plants are pretreated.  相似文献   

14.
In this study we determined the base temperature and Heat units for leaf flushing initiation and growth of RRIM-600 and GT1Hevea clones. The minimum base temperature was found to be approximately 16° C for leaf flushing emission and 19° C for shoot growth in terms of height. Approximately 420 degree days at 16° C as base temperature is required for successive leaf flushing initiation. Linear equations with correlation coefficients above 0.95 allow an estimation of the height increase from the accumulated degree days, corrected or otherwise for photoperiod. The highest correlation coefficients demonstrated a positive effect of the photoperiod among the factors influencing the shoot growth.  相似文献   

15.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

16.
Leaf primordia are iteratively formed on the flanks of the shoot apical meristem (SAM) at the vegetative shoot apex of Arabidopsis thaliana. The youngest leaf primordia and the SAM are extensively covered by older proliferating leaves, making it difficult to obtain accurate volumetric data from these structures. Combination of serial histological sections combined with 3D reconstruction software allowed us to acquire such data. Here, we compared the SAMs of wild‐type plants of the Columbia‐0 and Landsberg erecta ecotypes with those of clavata3‐2 (clv3‐2) mutants, which produce an enlarged SAM. In addition, the SAM size and morphology of plants over‐expressing the gibberellin‐20 oxidase (GA20OX) gene was examined, and the effect of mild osmotic stress on primordium size was measured. Efficient 3D visualization of gene expression patterns is also possible with this method, as illustrated by the analysis of SHOOTMERISTEMLESS:GUS and WUSCHEL:GUS reporter lines.  相似文献   

17.
M. H. Rahman  S. Saiga 《Plant and Soil》2005,272(1-2):163-171
Neotyphodium coenophialuminteracts mutualistically with its host grasses. Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte,Neotyphodium coenophialum(Morgan-Jones and Gams) Glenn, Bacon and Hanlin, often perform better than non-infected plants, especially in limited resource environments. However, there is a scarcity of information about endophyte-grass ecotypes interaction in Andisols of temperate regions. Clones of three tall fescue ecotypes (Fukaura, Koiwai and Showa) either infected with N. coenophialum (E+) or noninfected (E–) were grown in Andisols (Black Andisol: naturally low content of phosphorus, high in other nutrients; Red Andisol: naturally high content of phosphorus, low in other nutrients) for 133 days in a controlled environment. Cumulative shoot dry weight, daily regrowth rates (tiller number, plant height and shoot dry matter) after clippings and nutrient uptake, transport and efficiency ratios were measured. In Black Andisol, E+ plants had significantly higher cumulative shoot dry weight as well as daily regrowth rates than E– plants, while in Red Andisol the reverse was true. Among the ecotypes studied, Showa had the highest shoot growth. Significantly higher phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) uptake as well as transport were identified in E+ vs. E– plants grown in Black Andisol. With few exceptions, values for nutrient efficiency ratios were not significantly different between E+ and E– plants grown in both soils. Significant three-way interaction (endophyte × ecotype × soil) for cumulative shoot dry weight and regrowth rate revealed that the ecotype specific regrowth responses to endophyte infection were depended on soil nutrient conditions. Vegetative growth and nutrient acquisition in tall fescue varied with ecotype and were modified by abiotic (soil fertility status) as well as biotic (endophyte infection) factors.  相似文献   

18.
Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30‐year‐old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short‐term (tiller population growth rates) and long‐term (17‐year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long‐lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems.  相似文献   

19.
An investigation was undertaken to determine whether photoperiod or temperature have an effect on the timing of vertebral opaque–transluscent band‐pair deposition in captive young‐of‐the‐year (YOY) little skate Leucoraja erinacea. The experimental design consisted of a randomized complete block split plot design with two factors: temperature and light. Temperature was nested within light and therefore four variables were tested: 1) constant light, 2) constant temperature, 3) seasonal light and 4) seasonal temperature. For 18 months, L. erinacea experienced accelerated seasonal conditions of temperature and light to mimic 3 years of growth. This study provides primary and supporting evidence that seasonal photoperiod and temperature, respectively, have no effect on timing of vertebral band‐pair deposition in captive L. erinacea. Vertebral analysis of surviving L. erinacea (n = 6, time = 18 months) showed that all produced 1–1·5 band pairs, while centrum edge analysis (n = 56) showed timing of winter and summer band deposition were similar regardless of treatment. The winter band (translucent) appeared in February 2007 and January 2008 while the summer band (opaque) showed up in July for both 2007 and 2008 and mimicked patterns observed in the wild. While temperature and photoperiod appear to have no effect on timing of band‐pair deposition in YOY L. erinacea, other mechanisms which may influence band deposition should be investigated including the effect of food ration and the presence of a circa‐annual rhythm and hormone secretion.  相似文献   

20.
Flower bud initiation in seedlings and vegetatively propagated plants of Salix pentandra from different locations has been studied under controlled conditions. In mature plants flower bud formation was induced by 2-chloroethyltrimethylammoniumchloride (CCC) and by short day treatment. The effect of CCC was antagonized by GA3. The critical photoperiod for flower bud formation was about 18 h for a southern clone (from 49°48'N), but cuttings of a northern ecotype (from 69°39'N) formed flower buds even at 24 h photoperiod. Generally, flower bud formation occurred simultaneously with apical growth cessation. However, apical growth cessation was not a prerequisite for floral initiation and flower buds were also found in elongating plants. Seedlings up to 60 days old did not form flower buds in growth chamber studies. The length of the juvenile phase has not been studied in detail, but cuttings taken from seedlings approximately 20 cm high and 60 days old were able to develop flower buds when treated with CCC. A gradual transition from the juvenile to the mature phase was obtained by repeated pruning of seedlings grown at 18°C and 24 h photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号