首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.  相似文献   

2.
Ethyl 4-[2-(6-methyl-3-pyridyloxy)butyloxy]benzoate (2) was prepared as a novel anti-juvenile hormone (anti-JH) agent. Compound 2 induced precocious metamorphosis in larvae of the silkworm and black pigmentation of the larval cuticle, which are clearly recognized as JH-deficiency symptoms. The 4-ethoxycarbonyl group on the benzene ring was indispensable for activity. The activity of compound 2 could be fully counteracted by methoprene, a JH agonist, but not by the dietary administration of 20-hydroxyecdysone.  相似文献   

3.
1-Isobutyl-5-(4-phenoxyphenyl)imidazole (KK-98), an inhibitor of juvenile hormone (JH) biosynthesis in the cockroach, and related imidazole compounds were evaluated against silkworm, Bombyx mori, for their activity to induce precocious metamorphosis. KK-98 induced precocious metamorphosis in the 4th instar larvae at high doses. Replacement of the 4-phenoxy group by a 3-phenoxy or 3-benzyloxy group on the benzene ring increased the activity. Among this series of compounds, 5-(3-benzyloxyphenyl)-1-isopropylimidazole (8) showed the highest activity. The induction of precocious metamorphosis by compound 8 was rescued by the simultaneous application of methoprene, a JH minie. When newly molted 3rd instar larvae were treated with a high dose of compound 8, a few larvae formed larval-pupal intermediates in the 3rd instar stage, which has not been formed by treating of any other imidazoles so far.  相似文献   

4.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

5.
A series of ethyl 4-(2-aryloxyhexyloxy)benzoates was prepared and tested for their activity to induce precocious metamorphosis in larvae of the silkworm. Phenyl analog 5 showed activity comparable to that of the 6-methyl-3-pyridyl analog reported as a novel anti-JH agent. The activity of 5 could be fully counteracted by methoprene, a JH agonist. The ethoxycarbonyl group of 5 was essential for its activity.  相似文献   

6.
7.
When an imidazole derivative (KK-42) was applied to day 1 third instar larvae of the silkworm, Bombyx mori, 100% underwent precocious metamorphosis at the end of the fourth instar. Thus, the fourth instar becomes the last instar in these KK-42–treated larvae. The endocrine systems underlying the precocious metamorphosis were analyzed in the present study. Hydroprene application during the prolonged third instar after KK-42 treatment can prevent precocious metamorphosis, and the results showed dose-dependent and stage-specific effects. From analysis of the developmental changes in ecdysteroid levels in both KK-42–treated larvae and KK-42– and hydroprene-treated larvae, we conclude that changes in JH levels during the third larval instar can modify the secretion pattern of prothoracic glands and that during the next larval instar, very low ecdysteroid levels during the early stages of the presumptive last (fourth) larval instar are directly related to precocious metamorphosis. Arch. Insect Biochem. Physiol. 36:349–361, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Konopova B  Smykal V  Jindra M 《PloS one》2011,6(12):e28728
Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.  相似文献   

9.
10.
The entomogenous fungus Nomuraea rileyi reportedly secretes a proteinaceous substance inhibiting larval molt and metamorphosis in the silkworm Bombyx mori. We studied the possibility that N. rileyi controls B. mori development by inactivating hemolymph molting hormone, ecdysteroids. Incubation of ecdysone (E) and 20-hydroxyecdysone (20E) in fungal-conditioned medium resulted in their rapid modification into products with longer retention times in reverse-phase HPLC. Each modified product from E and 20E was purified by HPLC, and identified by NMR as 22-dehydroecdysone and 22-dehydro-20-hydroxyecdysone. Some other ecdysteroids with a hydroxyl group at position C22 were also modified. Injection of the fungal-conditioned medium into Bombyx mori larvae in the mid-4th instar inhibited larval molt but induced precocious pupal metamorphosis, and its injection into 5th instar larvae just after gut purge blocked pupal metamorphosis. In hemolymph of injected larvae, E and 20E disappeared and, in turn, 22-dehydroecdysone and 22-dehydro-20-hydroxyecdysone accumulated. These results indicate that N. rileyi secretes a specific enzyme that oxidizes the hydroxyl group at position C22 of hemolymph ecdysteroids and prevents molting in B. mori larvae.  相似文献   

11.
As in the tobacco hornworm Manduca sexta, the synthetic juvenile hormone analogue ETB (ethyl 4-[2-(tert-buthylcarbonyloxy)butoxy]benzoate) showed both juvenile hormone-like and anti-juvenile hormone activities in the silkworm, Bombyx mori. When ETB was topically applied to allatectomized 4th-instar larvae, the compound counteracted the effects of allatectomy, such as induction of precocious metamorphosis and black pigmentation in the larval markings. Therefore, ETB had juvenile hormone activity, but it could neither induce brown pigmentation in the markings nor induce an extra-larval moult as can juvenile hormone.When intact 3rd-instar larvae were treated with the compound, the majority underwent precocious metamorphosis in the 4th-instar, and later formed fertile miniature adults. Some moulted into larval-pupal intermediates or 5th-instar larvae with darkened larval markings and/or with abnormality of specific regions of the silk-gland. The optimal dose for such anti-juvenile effects was about 1–10 μg/larva, and higher doses showed less activity. Such anti-juvenile hormone effects of ETB were counteracted by administration of the juvenile hormone analogue, methoprene, before a certain critical time in the 4th-instar. The corpora allata of treated larvae appeared cytologically normal, and the corpora allata from ETB-induced miniature moths secreted juvenile hormone when implanted into allatectomized 4th-instar larvae.  相似文献   

12.
13.
Physico-chemical analysis of juvenile hormones (JHs) of Spodoptera littoralis revealed highest quantities in the second half of embryonic development and in newly hatched 1st instar larvae. At these stages, mostly JH II, JH I and little JH III were found, while in later stages only JH II and JH III were found. Titres fluctuated in a similar manner in all larval instars, being lowest during the moults. In last (=6th) instar larvae, JHs disappeared in the late feeding-digging stage and again increased in the early prepupal stage. Parasitisation with Chelonus inanitus, a solitary egg-larval parasitoid which induces in its host the precocious onset of metamorphosis in the 5th instar, did not alter JH homologue composition but led to a disappearance of JHs in the 5th instar. Implantation of a parasitoid larva into early 5th instar larvae containing polydnavirus/venom caused a drop in the JH titre which indicates that the parasitoid larva plays an important role in the manipulation of the host's JH titre. In the parasitoid larva, only JH III was found; titres were highest in the 2nd larval instar, a stage when the host is in the 5th instar and contains almost no JHs. Thus, JHs of the parasitoid and the host fluctuate in an independent manner.  相似文献   

14.
Parasitism by the braconid wasp Apanteles congregatus decreases the effectiveness of the anti-juvenile hormone agents ETB (ethyl 4-[2-{ittert-butyl carbonyloxy}bytoxy]benzoate) and fluoromevalonolactone (FMev) in inducing precocious metamorphosis of Manduca sexta larvae. Topical application of 1–200 μg ETB to parasitized third-instar larvae had no effect on either host or parasite development, whereas doses of 50μg or more ETB applied to unparasitized third-instar larvae caused formation of larval-pupal intermediates after the fourth instar. Parasitism also decreased the effectiveness of 100–200 μg FMev in causing metamorphosis at the moult following its application. In contrast to ETB, FMev disrupted development of the parasitoids. No wasps emerged when preterminal stage hosts were treated with FMev and the hosts formed larval-pupal intermediates. After treatment of terminal stage hosts with FMev, the number of emerging parasitoids was reduced by one-third. Precocene II (100 μg per larvae) had no effect on development of either M. sexta or A. congregatus.  相似文献   

15.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

16.
17.
In insects, a steroid hormone, 20-hydroxyecdysone (20E), plays important roles in the regulation of developmental transitions by initiating signaling cascades via the ecdysone receptor (EcR). Although 20E has been well characterized as the molting hormone, its precursor ecdysone (E) has been considered to be a relatively inactive compound because it has little or no effect on classic EcR mediated responses. I found that feeding E to wild-type third instar larvae of Drosophila melanogaster accelerates the metamorphic timing, which results in elevation of lethality during metamorphosis and reduced body size, while 20E has only a minor effect. The addition of a juvenile hormone analog (JHA) to E impeded their precocious pupariation and thereby rescued the reduced body size. The ability of JHA impeding the effect of E was not observed in the Methoprene-tolerant (Met) and germ-cell expressed (gce) double mutant animals lacking JH signaling, indicating that antagonistic action of JH against E is transduced via a primary JH receptor, Met, or a product of its homolog, Gce. I also found that L3 larvae are susceptible to E around the time when they reach their minimum viable weight. These results indicate that E, and not just 20E, is also essential for proper regulation of developmental timing and body size. Furthermore, the precocious pupariation triggered by E is impeded by the action of JH to ensure that animals attain body size to survive metamorphosis.  相似文献   

18.
A number of 1-citronellyl-5-substituted imidazoles were synthesized and bioassayed on the silkworm, Bombyx mori, in order to assess their anti-juvenile hormone activity. Most of the 1-citronellyl-5-substituted imidazoles induced precocious metamorphosis in the 3rd and 4th instar larvae of B. mori by topical application. The percentage of precocious metamorphosis correlated well with the dosage. Among the compounds tested, l-citronellyl-5-(2-chlorophenyl)imidazole (8) and the 2-methylphenyl analog 10 showed the highest activity. When compounds 8 and 10 were applied to the 4th instar larvae at 10 μg/larva, precocious pupation was induced in 100% without any lethal effects.  相似文献   

19.
20.
《Journal of Asia》2002,5(2):175-180
Diflubenzuron (DFB) has been known to prevent metamorphosis of silkworm, Bombyx mori, from larval to pupal stage at low dose exposure. To explain this inhibitory action of DFB, a hypothesis was raised that DFB acts like juvenile hormone (JH) or DFB inhibits JH esterase to increase endogenous JH titer. A JH bioassay using isolated abdomen clearly indicates that DFB does not act as JH analog because DFB did not induce vitellogenesis in the isolated female abdomen, while endogenous JHs did significantly. General esterase activities in hemolymph were lower in DFB-treated fifth instar larvae than in the control larvae, but there was no difference between fat body esterase activities in both groups. Two hemolymph esterases (‘E1’ and ‘E2’) of the fifth instar larvae were separated and visualized by α-and β-naphthyl acetate. From in vitro incubation experiment, the cathodal esterase (‘E1’) was sensitive to DFB at its nanomolar range. Considering the fact that early fifth instar larvae have high level of JH esterase in the hemolymph, these results suggest that DFB inhibit larval to pupal metamorphosis by blocking JH degradation, which increases endogenous JH titer especially at the critical period when the larvae determine metamorphic development at the following molt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号