共查询到20条相似文献,搜索用时 15 毫秒
1.
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. 相似文献
2.
Sorgen PL Duffy HS Sahoo P Coombs W Delmar M Spray DC 《The Journal of biological chemistry》2004,279(52):54695-54701
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli. 相似文献
3.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1. 相似文献
4.
c-Src can disrupt the connexin 43 (Cx43) and zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. Previously, the authors characterized the interaction of domains from these proteins with the carboxyl terminus of Cx43 (Cx43CT) and found that binding of the c-Src SH3 domain to Cx43CT disrupted the Cx43CT/ZO-1 PDZ-2 domain complex. Because Cx43 and Cx40 form heteromeric connexons and display similar mechanisms of pH regulation, the authors addressed whether Cx40CT interacts with these domains in a similar manner as Cx43CT. Nuclear magnetic resonance (NMR) data indicate that Cx40CT is an intrinsically disordered protein. NMR titrations determined that PDZ-2 affected the last 28 Cx40CT residues and SH3 shifted numerous amino-terminal Cx40CT residues. Finally, the Cx40CT/PDZ-2 complex was unaffected by SH3 and both domains interacted simultaneously with Cx40CT. This result differs from when the same experiment was performed with Cx43CT, suggesting different mechanisms of regulation exist between connexin isoforms, even when involving the same molecular partners. 相似文献
5.
Macdonald AI Sun P Hernandez-Lopez H Aasen T Hodgins MB Edward M Roberts S Massimi P Thomas M Banks L Graham SV 《The Biochemical journal》2012,446(1):9-21
Gap junctions, composed of Cxs (connexins), allow direct intercellular communication. Gap junctions are often lost during the development of malignancy, although the processes behind this are not fully understood. Cx43 is a widely expressed Cx with a long cytoplasmic C-terminal tail that contains several potential protein-interaction domains. Previously, in a model of cervical carcinogenesis, we showed that the loss of gap junctional communication correlated with relocalization of Cx43 to the cytoplasm late in tumorigenesis. In the present study, we demonstrate a similar pattern of altered expression for the hDlg (human discs large) MAGUK (membrane-associated guanylate kinase) family tumour suppressor protein in cervical tumour cells, with partial co-localization of Cx43 and hDlg in an endosomal/lysosomal compartment. Relocalization of these proteins is not due to a general disruption of cell membrane integrity or Cx targeting. Cx43 (via its C-terminus) and hDlg interact directly in vitro and can form a complex in cells. This novel interaction requires the N- and C-termini of hDlg. hDlg is not required for Cx43 internalization in W12GPXY cells. Instead, hDlg appears to have a role in maintaining a cytoplasmic pool of Cx43. These results demonstrate that hDlg is a physiologically relevant regulator of Cx43?in transformed epithelial cells. 相似文献
6.
J. G. Laing E. M. Westphale G. L. Engelmann E. C. Beyer 《The Journal of membrane biology》1994,139(1):31-40
Connexin45 is a gap junction protein which forms channels with unique characteristics. RNA blots demonstrated that connexin45 is expressed in a number of cell lines including WB, SK Hepl, BHK, A7r5, CLEM, and BWEM cells. Connexin45 was further studied in BWEM cells using specific affinity-purified antibodies directed against a synthetic peptide representing amino acids 285–298 of its sequence. Immunofluorescence experiments demonstrated that the BWEM cells expressed both connexin43 and connexin45 and that these connexins colocalized. Connexin45 polypeptide, immunoprecipitated from BWEM cells metabolically labeled with [35S]-methionine, consisted of a predominant 48 kD polypeptide. Connexin45 and connexin43 contained radioactive phosphate when immunoprecipitated from BWEM cells metabolically labeled with [32P]-orthophosphoric acid. This phosphate label was removed from connexin45 by alkaline phosphatase digestion. Treatment of BWEM cells with the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited intercellular passage of microinjected Lucifer yellow. While TPA treatment induced phosphorylation of connexin43 in these cells, it reduced the expression of connexin45. Furthermore, the connexin45 expressed after TPA treatment was not phosphorylated. These results suggest that treatments which alter protein phosphorylation may regulate connexin43 and connexin45 in BWEM cells by different mechanisms.These studies were supported by National Institutes of Health grants HL45466 and EY08368. J.G.L. is supported by a fellowship from the Lucille P. Markey Foundation. E.C.B. is an Established Investigator of the American Heart Association. 相似文献
7.
Xu Q Kopp RF Chen Y Yang JJ Roe MW Veenstra RD 《American journal of physiology. Cell physiology》2012,302(10):C1548-C1556
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40. 相似文献
8.
Afaq Hussain Subhajit Das Sarma Swathy Babu Debnath Pal Jayasri Das Sarma 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(10):1423-1436
Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage. 相似文献
9.
Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. 总被引:4,自引:0,他引:4 下载免费PDF全文
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end. 相似文献
10.
Grikscheit K Thomas N Bruce AF Rothery S Chan J Severs NJ Dupont E 《Cell communication & adhesion》2008,15(1):185-193
In the human heart, ventricular myocytes express connexin 43 (Cx43) and traces of Cx45. In congestive heart failure, Cx43 levels decrease, Cx45 levels increase and gap junction size decreases. To determine whether alterations of connexin coexpression ratio influence gap junction size, we engineered a rat liver epithelial cell line that endogenously expresses Cx43 to coexpress inducible levels of Cx45 under stimulation of the insect hormone, ponasterone A. In cells induced to express Cx45, gap junction sizes are significantly reduced (by 15% to 20%; p < 0.001), an effect that occurs despite increased levels of junctional connexons made from both connexins. In contrast, coexpression of Cx40 with Cx43 does not lead to any change in gap junction size. These results are consistent with the idea that increased Cx45 expression in the failing ventricle contributes to decreased gap junction size. 相似文献
11.
Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation 总被引:5,自引:0,他引:5
Phosphorylation of the gap junction protein connexin 43 (Cx43) by protein kinase C (PKC) decreases dye coupling in many cell types. We report an investigation of the regulation by PKC of Cx43 gap junctional hemichannels (GJH) expressed in Xenopus laevis oocytes. The activity of GJH was assessed from the uptake of hydrophilic fluorescent probes. PKC inhibitors increased probe uptake in isolated oocytes expressing recombinant Cx43, indicating that the regulatory effect occurs at the hemichannel level. We identified by mutational analysis the carboxy-terminal (CT) domain sequences involved in this response. We found that 1) Ser368 is responsible for the regulation of Cx43 GJH solute permeability by PKC-mediated phosphorylation, 2) CT domain residues 253-270 and 288-359 are not necessary for the effect of PKC, and 3) the prolinerich CT region is not involved in the effect of phosphorylation by PKC. Our results demonstrate that Ser368 (but not Ser372) is involved in the regulation of Cx43 solute permeability by PKC-mediated phosphorylation, and we conclude that different molecular mechanisms underlie the regulation of Cx43 by intracellular pH and PKC-mediated phosphorylation. protein kinase C blocker; dye loading; hemichannel 相似文献
12.
Banerjee D Das S Molina SA Madgwick D Katz MR Jena S Bossmann LK Pal D Takemoto DJ 《The Journal of biological chemistry》2011,286(27):24519-24533
Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells. 相似文献
13.
Duffy HS Sorgen PL Girvin ME O'Donnell P Coombs W Taffet SM Delmar M Spray DC 《The Journal of biological chemistry》2002,277(39):36706-36714
pH-induced closure of connexin43 (Cx43) channels involves interaction of the Cx43 carboxyl-terminal (Cx43CT) with a separate "receptor" domain. The receptor location and structure and whether the interaction is directly intramolecular are unknown. Here we show resonant mirror technology, enzyme-linked sorbent assays, and nuclear magnetic resonance (NMR) experiments demonstrating pH-dependent binding of Cx43CT to region 119-144 of Cx43 (Cx43L2), which we propose is the receptor. NMR showed that acidification induced alpha-helical order in Cx43L2, whereas only a minor modification in Cx43CT structure was detected. These data provide the first demonstration of chemically induced structural order and binding between cytoplasmic connexin domains. 相似文献
14.
Gap junctions are formed by a family of transmembrane proteins, connexins. Connexin43 is a widely studied member of the family, being ubiquitously expressed in a variety of tissues and a target of a large number of disease mutations. The intracellular loop of connexin43 has been shown to include a calmodulin binding domain, but detailed 3-dimensional data on the structure of the complex are not available. In this study, we used a synthetic peptide from this domain to reveal the conformation of the calmodulin-peptide complex by small angle X-ray scattering. Upon peptide binding, calmodulin lost its dumbbell shape, adopting a more globular conformation. We also studied the energetics of the interaction using calorimetry and computational methods. All our data indicate that calmodulin binds to the peptide from cx43 in the classical ‘collapsed’ conformation. 相似文献
15.
《生物化学与生物物理学报:生物膜》2018,1860(1):83-90
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (< 1000 Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP3) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. 相似文献
16.
《FEBS letters》2014,588(8):1249-1258
The gap junction family of proteins is widely expressed in mammalian cells and form intercellular channels between adjacent cells, as well as hemichannels, for transport of molecules between the cell and the surrounding environment. In addition, gap junction proteins have recently been implicated as important for the regulation of cell adhesion and migration in a variety of cell types. The gap junction protein connexin43 (Cx43) regulates B lymphocyte adhesion, BCR- and LFA-1-mediated activation of the GTPase Rap1, and cytoskeletal rearrangements resulting in changes to cell shape and membrane spreading. We demonstrate here that the actin cytoskeleton is important for the distribution of Cx43 in the B cell plasma membrane and for other cell processes involving the cytoskeleton. Using shRNA knockdown of Cx43 in B lymphoma cells we show that Cx43 is also necessary for chemokine-mediated Rap 1 activation, motility, CXCL12-directed migration, and movement across an endothelial cell monolayer. These results demonstrate that in addition to its role in B cell spreading, Cx43 is an important regulator of B-cell motility and migration, processes essential for normal B-cell development and immune responses. 相似文献
17.
The present immunocytochemical study examines in the rat ovary the pattern of expression of connexin 43 (Cx43), a subunit of gap junctions. Using a well-characterized specific antiserum against rat Cx43, immunoreactivity was not detected in the fetal ovary, i.e., prior to follicular formation. However, in the ovary of 20-day-old, 35-day-old, and adult rats, strong Cx43-immunore-activity was associated with the cell borders of the follicular epithelium/granulosa cells of all developmental stages (primordial follicles, preantral and antral secondary follicles). In general, immunoreactivity of the granulosa cells of large antral follicles appeared more intense than the one of smaller follicles. Staining was also seen in oocytes (cytoplasmic staining). Theca cells of large antral follicles, but not of small follicles were immunoreactive. Immunoreactive interstitial cells were not seen in ovaries of 20- and 35-day-old animals, but staining in these cells was present in adult rats. In large follicles with signs of atresia, granulosa cells lacked Cx43-immunoreactivity, whereas Cx43-immunoreactivity in their theca interna strikingly increased. Corpora lutea in the cyclic adult rats were heterogeneously stained, with either no detectable immunoreactivity, staining of cell borders of most luteal cells, or with conspicuous staining of only a few cells. In the pregnant animals on gestation days (GD) 12, 14, and 17, all luteal cells stained strongly for Cx43 at the cell surface. Shortly before delivery (GD 21), however, the staining pattern vanished and only few, presumably luteal cells remained immunoreactive. In Western blots (using homogenates of whole ovaries), the Cx43 antiserum recognized a major band of approximate Mr 43 × 103, together with minor bands, which may reflect the presence of several differently phosphorylated Cx43 forms. This is indicated by treatment with alkaline phosphatase, which reduced the banding pattern to one single band. In summary, the gap junction molecule Cx43 is abundantly expressed in all endocrine compartments of the rat ovary. The staining pattern obtained in the present study indicates that Cx43 and presumably gap-junctional communication are associated with follicular development, atresia, and the development of the interstitial gland, as well as with the development and regression of the corpus luteum. The heterogeneous staining within the ovary furthermore hints to a contribution of the local intraovarian factors in the regulation of Cx43 expression. © 1995 Wiley-Liss, Inc. 相似文献
18.
Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. 总被引:3,自引:0,他引:3
Toshihiro Suzuki Tetsuro Takamatsu Masahito Oyamada 《The journal of histochemistry and cytochemistry》2003,51(7):903-912
To elucidate whether the two different gap junction proteins connexin43 (Cx43) and connexin26 (Cx26) are expressed and localized in a similar manner in the adult rat cochlea, we performed three-dimensional confocal microscopy using cryosections and surface preparations. In the cochlear lateral wall, Cx43-positive spots were localized mainly in the stria vascularis and only a few spots were present in the spiral ligament, whereas Cx26-positive spots were detected in both the stria vascularis and the spiral ligament. In the spiral limbus, Cx43 was widely distributed, whereas Cx26 was more concentrated on the side facing the scala vestibuli and in the basal portion. In the organ of Corti, Cx43-positive spots were present between the supporting cells but they were fewer and much smaller than those of Cx26. These data demonstrated distinct differences between Cx43 and Cx26 in expression and localization in the cochlea. In addition, the area of overlap of zonula occludens-1 (ZO-1) immunolabeling with Cx43-positive spots was small, whereas it was fairly large with Cx26-positive spots in the cochlear lateral wall, suggesting that the differences are not associated with the structural difference between carboxyl terminals, i.e., those of Cx43 possess sequences for binding to ZO-1, whereas those of Cx26 lack these binding sequences. 相似文献
19.
Kjenseth A Fykerud TA Sirnes S Bruun J Yohannes Z Kolberg M Omori Y Rivedal E Leithe E 《The Journal of biological chemistry》2012,287(19):15851-15861
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system. 相似文献
20.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles. 相似文献