首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reissner's fibers are secretions produced by different ependymal areas of the chordate brain, viz., in adult vertebrates, by the dorsal subcommissural organ, and in all stages of cephalochordates (Branchiostoma lancelets), by the ventral infundibular organ. Fibers produced by these different organs are seemingly identical and the two fiber sources also share some immunocytochemical and lectin-binding properties. The secretions in these two glands are, however, not identical; the infundibular organ cells are strongly reactive with antibodies against vertebrate Reissner's fibers, but they do not react with antibodies raised against the source of the vertebrate fibers, viz., the subcommissural organ. The results support the possibility that, in adult vertebrates, the Reissner's fibers are composed of material not only from the subcommissural organ, but also from another, not yet identified, source that is identical or equivalent to the infundibular organ of the lancelet. There are indications that the infundibular organ is immunocytochemically closely akin to some secretory cells in the vertebrate embryonic brain and also to those that produce the juvenile vertebrate Reissner's fibers, viz., secretory cells in the flexural organ.  相似文献   

2.
In order to examine the in situ nitrogen excretion physiology of gulf toadfish ( Opsanus beta ) (Fam. Batrachoididae), several biochemical and physiological measurements relating to urea synthesis and excretion were measured in samples taken from freshly collected gulf toadfish from a subtidal population in Biscayne Bay, Florida, U.S.A. This indirect appoach was used, instead of direct measurements of nitrogen excretion, because nitrogen excretion patterns of gulf toadfish are altered markedly during the first 24 h of capture disturbance or laboratory confinement. The values obtained for plasma cortisol levels, and the activities of hepatic ornithine-urea cycle enzymes, including glutamine synthetase (and its partitioning between cytosolic and mitochondrial compartments), suggest that gulf toadfish in Biscayne Bay may excrete a substantial portion of their waste nitrogen as urea. Also conducted were correlation analyses of several biotic variables (plasma [cortisol], enzyme activities, plasma [urea], hepatosomatic index, and plasma [Ca++]) with several abiotic variables (temperature, salinity, depth and dissolved oxygen), and with collection site and season. Results of these analyses are discussed in the context of hypotheses to explain ureotely in this teleost fish.  相似文献   

3.
This study examines the role of a myoplasmic protein, parvalbumin, in enhancing muscle relaxation by fishes. Parvalbumin is thought to bind free Ca2+ during muscle contraction, thereby reducing intracellular [Ca2+] in muscle and speeding muscle relaxation by reducing Ca2+ availability to the troponin complex. We hypothesized that parvalbumin expression is ubiquitously expressed in fish muscle and that its expression levels and role in muscle relaxation would depend on the activity level and the thermal environment of a given fish species. Muscle contractile properties and patterns of parvalbumin expression were examined in pinfish (Lagodon rhomboides) and two species of toadfish (gulf toadfish, Opsanus beta, and oyster toadfish, Opsanus tau). Unlike another sparid (sheepshead), the active swimming pinfish does not express parvalbumin in its slow-twitch red muscle. However, both sheepshead and pinfish have relatively high levels of parvalbumin in their myotomal white muscle. Gulf toadfish from the Gulf of Mexico expressed higher levels of parvalbumin and had faster muscle relaxation rates than oyster toadfish from more northern latitudes. The faster muscle of gulf toadfish also expressed relatively more of one parvalbumin isoform, suggesting differences in the binding properties of the two isoforms observed in toadfish swimming muscle. Parvalbumin expression and its role in muscle relaxation appear to vary widely in fishes. There are many control points involved in the calcium transient of contracting muscle, leading to a variety of species-specific solutions to the modulation of muscle relaxation.  相似文献   

4.
The nitrogen metabolism and excretion patterns of the grunting toadfish Allenbatrachus grunniens and the effects of salinity on these processes were examined. Individuals of A. grunniens were subjected to several experimental treatments, including variable salinity (2 to 30), high pH (8·5 compared to 7·0 for controls), high environmental ammonia (10 mM) and confinement to small water volumes, and measurements were made of activities of selected enzymes of nitrogen metabolism, ammonia and urea excretion rates, and tissue and plasma contents of ammonia, urea and amino acids. Activities of key ornithine‐urea cycle enzymes were rather low ( e.g . liver carbamoyl phosphate synthetase III activity was 0·001 μmols min−1 g−1), and A. grunniens consistently demonstrated a low capacity for urea excretion despite significant elevations of plasma and tissue ammonia contents by the high pH and high ammonia treatments. This species could thus be categorized as ammoniotelic. Total free amino acid contents in plasma and tissues were increased by the high pH and high ammonia treatments, but no patterns were discerned in individual amino acids that would indicate any preferential accumulation ( e.g . alanine and glutamine) as has been noted previously in several semi‐terrestrial fish species. Thus, it appeared that A. grunniens was not unusual in its patterns of nitrogen metabolism and excretion in comparison to other 'typical' teleosts. Furthermore, manipulation of salinity had no major effects on nitrogen excretion in either this species or in comparative studies with the ureotelic gulf toadfish Opsanus beta . The results are discussed in the context of the broader pattern of nitrogen metabolism and excretion in the Batrachoididae.  相似文献   

5.
The teleost gasbladder is believed to aid in fish audition by transferring pressure components of incoming sound to the inner ears. This idea is primarily based on both anatomical observations of the mechanical connection between the gasbladder and the ear, followed by physiological experiments by various researchers. The gasbladder movement has been modeled mathematically as a pulsating bubble. This study is extending the previous work on fish with a physical coupling of the gasbladder and ear by investigating hearing in two species (the blue gourami Trichogaster trichopterus, and the oyster toadfish Opsanus tau) without a mechanical linkage. An otophysan specialist (the goldfish Carassius auratus) with mechanical coupling, is used as the control. Audiograms were obtained with acoustically evoked potentials (e.g., auditory brainstem response) from intact fish and from the same individuals with their gasbladders deflated. In blue gourami and oyster toadfish, removal of gas did not significantly change thresholds, and evoked potentials had similar waveforms. In goldfish thresholds increased by 33–55 dB (frequency dependent) after deflation, and major changes in evoked potentials were observed. These results suggest that the gasbladder may not serve an auditory enhancement function in teleost fishes that lack mechanical coupling between the gasbladder and the inner ear. Accepted: 28 February 2000  相似文献   

6.
Nitrogen excretion by the gulf toadfish (Opsanus beta) is of interest because of its high proportion of urea excretion compared with that of other teleosts. To better understand the factors influencing the timing of nitrogen excretion, the ratio of excreted urea∶ammonia, and the effector molecules regulating these processes, gulf toadfish were subjected to a series of experiments that moved them progressively from internal laboratory to outdoor mesocosm settings while assessing their behavior, nitrogen excretion patterns, levels of plasma hormones/effectors, and other parameters. In confined flux chambers in both laboratory and outdoor settings, toadfish nitrogen excretion was largely observed as urea pulses, with no apparent diel patterns to the pulses. Unrestrained toadfish in mesocosms exhibited distinctly nocturnal behavior, remaining exclusively in shelters during the day but taking several forays out into the mesocosm at night. In contrast to nitrogen excretion patterns in chambers, urea and ammonia were coexcreted in mesocosms and ratios for urea∶ammonia were very close to 1∶1 for both fed and fasted toadfish. The majority of measured excretion (and corresponding declines in plasma urea levels) occurred during two distinct periods of pulsing during daylight hours (0600-1000 and 1600-1800 hours). The declines in plasma urea associated with excretion were preceded by/coincided with declines in plasma cortisol. No day/night or hourly patterns in plasma serotonin (5-hydroxytryptamine [5-HT]) were observed, but there was a strong positive correlation among all samples between plasma urea and 5-HT. There was also a negative correlation between plasma cortisol and 5-HT. As expected for a nocturnally active species, plasma melatonin was significantly lower in daylight hours. A variety of enzyme activities (glutamine synthetase, glutaminase) and mRNA levels (glutamine synthetase, urea transporter, and Rhesus proteins) showed no significant variation over a diel cycle. Unlike prior laboratory studies, our results show that gulf toadfish in a natural setting have a distinctly diurnal pattern of nitrogen excretion and that ammonia and urea are coexcreted. The decline in plasma cortisol associated with urea pulses noted in prior laboratory studies was not as evident in the natural setting.  相似文献   

7.
Sea urchin adoral tube feet are highly specialized organs that have evolved to provide efficient attachment to the substratum. They consist of a disk and a stem that together form a functional unit. Tube foot disk tenacity (adhesive force per unit area) and stem mechanical properties (e.g., stiffness) vary between species but are apparently not correlated with sea urchin taxa or habitats. Moreover, ultrastructural studies of sea urchin disk epidermis pointed out differences in the internal organization of the adhesive secretory granules among species. This prompted us to look for interspecific variability in the composition of echinoid adhesive secretions, which could explain the observed variability in adhesive granule ultrastructure and disk tenacity. Antisera raised against the footprint material of Sphaerechinus granularis (S. granularis) were first used to locate the origin of adhesive footprint constituents in tube feet by taking advantage of the polyclonal character of the generated antibodies. Immunohistochemical assays showed that the antibodies specifically labeled the adhesive secretory cells of the disk epidermis in the tube feet of S. granularis. The antibodies were then used on tube foot histological sections from seven other sea urchin species to shed some light on the variability of their adhesive substances by looking for antibody cross‐reactivity. Surprisingly, no labeling was observed in any of the species tested. These results indicate that unlike the adhesive secretions of asteroids, those of echinoids do not share common epitopes on their constituents and thus would be “species‐specific.” In sea urchins, variations in the composition of adhesive secretions could therefore explain interspecific differences in disk tenacity and in adhesive granule ultrastructure. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The transport physiology of the urinary bladder of both the freshwater rainbow trout (Oncorhychus mykiss) and the marine gulf toadfish (Opsanus beta) was characterized with respect to urea, and the suitability of the urinary bladder as a model for renal urea handling was investigated. Through the use of the in vitro urinary bladder sac preparation urea handling was characterized under control conditions and in the presence of pharmacological agents traditionally used to characterize urea transport such as urea analogues (thiourea, acetamide), urea transport blockers (phloretin, amiloride), and hormonal stimulation (arginine vasotocin; AVT). Na(+)-dependence and temperature sensitivity were also investigated. Under control conditions, the in vitro trout bladder behaved as in vivo, demonstrating significant net reabsorption of Na(+), Cl(-), water, glucose, and urea. Bladder urea reabsorption was not affected by pharmacological agents and, in contrast to renal urea reabsorption, was not correlated to Na(+). However, the trout bladder showed a threefold greater urea permeability compared to artificial lipid bilayers, a prolonged phase transition with a lowered E(a) between 5 degrees C and 14 degrees C, and differential handling of urea and analogues, all suggesting the presence of a urea transport mechanism. The in vitro toadfish bladder did not behave as in vivo, showing significant net reabsorption of Na(+) but not of Cl(-), urea, or water. As in the trout bladder, pharmacological agents were ineffective. The toadfish bladder showed no differential transport of urea and analogues, consistent with a low permeability storage organ and intermittent urination. Our results, therefore, suggest the possibility of a urea transport mechanism in the urinary bladder of the rainbow trout but not the gulf toadfish. While the bladders may not be suitable models for renal urea handling, the habit of intermittent urination by ureotelic tetrapods and toadfish seems to have selected for a low permeability storage function in the urinary bladder.  相似文献   

9.
The cytoplasmic and mitochondrial forms of glutamine synthetase (GSase) were purified from the liver of the gulf toadfish Opsanus beta by modifications of methods previously applied to dogfish shark to examine their kinetic and structural properties. Both isozymes have subunit molecular weights of approximately 42 kDa (by SDS-PAGE) and native molecular weights of approximately 365 kDa (by gel filtration chromatography), suggesting an octomeric arrangement of the native enzymes. Identity of the purified proteins as GSase was further confirmed by western blot analysis using rabbit anti-chicken GSase antibodies. The requirement for MgCl2 and several kinetic properties (e.g.,Kms for glutamate, ATP and ammonia) of the two isozymes were very similar. Also notable was that both isozymes had Kms for ammonia in the micromolar range (like the dogfish enzyme). These results suggest that the enzymes are probably easily saturated with ammonia under physiological conditions. The two GSase isozymes differed substantially in terms of inhibition by methionine sulfoximine, pH optima, specific activity and ratios of transferase to biosynthetic activities. Given the similarities in size, these results suggest that the molecular model of a single gene coding for both isozymes as has been demonstrated in the dogfish shark may not apply to the toadfish GSases.  相似文献   

10.
The gastrointestinal tracts (GIT) of fish and other vertebrates are challenged with a diversity of functional demands caused by changes and differences in dietary inputs and environmental conditions. This contribution reviews how hormonal regulation plays an essential role in modulating the GIT functions of fish to match changes in functional demands. Exemplary is how hormones produced by the GIT, the associated organs (e.g., pancreas), and other sources (e.g., hypothalamus, adrenal cortex, thyroid, gonads) modulate the digestive processes (motility, secretion, and nutrient absorption) in response to dietary inputs. Hormones regulate the other GIT functions of osmoregulation (secretion and absorption of electrolytes and water), immunity, endocrine secretions, metabolism, and the elimination of toxic metabolites and environmental contaminants to match changes in environmental conditions and physiological states. Although the regulatory molecules and associated signaling pathways have been conserved during evolution of the vertebrate GIT, the specific responses often vary among fish with different feeding habits and from different environments, and can differ from those described for mammals.  相似文献   

11.
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique “pulsing” nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na+-K+-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.  相似文献   

12.
Most teleost fish are ammoniotelic, and relatively few are ureotelic, in which the majority of nitrogenous waste is excreted as urea. This study aimed to determine whether the gill ultrastructure of ureotelic fish might have specific, unique characteristics compared with ammoniotelic fish. The gill morphology was studied in three closely related species of the family Batrachoididae: Opsanus beta, the gulf toadfish; Opsanus tau, the oyster toadfish; and Porichthys notatus, the plainfin midshipman, because prior studies have demonstrated that the two former species are ureotelic and excrete urea in unique, short daily pulses, whereas the latter is ammoniotelic. Ultrastructural studies demonstrated significant trafficking of dense-cored vesicles (50-200 nm) between the Golgi apparatus and the apical membrane of epithelial cells surrounding gill filaments and lamellae in these two Opsanus spp. The material constituting the core of these vesicles was intensely stained by lead salt and was unloaded externally when vesicles contacted the apical membrane. Another characteristic of these urea-secreting fish was the presence of numerous large, black-stained lysosomes, which contained cored vesicles, suggesting a second destination for the dense-cored vesicles. As a working hypothesis, the present data suggest that the urea-transporter protein, recently found in toadfish gills, is inserted in the vesicle. Subsequently, it could serve to either sequester cytosolic urea that ultimately is secreted into the water after contact of these vesicles with the pavement cell apical membrane, or it could allow facilitated diffusion of urea across the plasma membrane following insertion into the membrane. As further comparative evidence, the ammoniotelic P. notatus exhibited neither the vesicular trafficking nor the population of lysosomes both found in Opsanus spp.  相似文献   

13.
Reexamination of metabolic potential in the toadfish sonic muscle   总被引:1,自引:0,他引:1  
Activities of eight enzymes were measured in the sonic muscle of the gulf toadfish, Opsanus beta, to determine the metabolic poise of this unique tissue and to evaluate potential sex related differences in metabolism. In contrast to a prior study (Pennypacker et al., '85, J. Exp. Zool., 239: 259-264), we observed substantial activities of M4-lactate dehydrogenase, 333 to 482 units/g wet sonic muscle weight. This observation and the presence of high activities of other enzymes of glycolytic and anaerobic metabolism (pyruvate kinase and creatine phosphokinase) lead us to conclude that this tissue has high anaerobic capacity. Also in contrast to the observations of Pennypacker et al. ('85), we found that the activities of some enzymes indicative of aerobic metabolism are relatively low. For example, the activities of citrate synthase found in sonic muscle (1.5 to 2.7 units/g) are only slightly higher than values obtained for toadfish white skeletal muscle (1.2 units/g). The discrepancies between the results obtained by the two studies appear to be methodological ones. Lastly, significant differences in enzyme activities between males and females were observed for lactate dehydrogenase, malate dehydrogenase, and citrate synthase, and possible explanations for these differences are discussed.  相似文献   

14.
The α-Gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation   总被引:3,自引:0,他引:3  
Galili U 《Biochimie》2001,83(7):557-563
Many patients with failing organs (e.g., heart, liver or kidneys), do not receive the needed organ because of an insufficient number of organ donors. Pig xenografts have been considered as an alternative source of organs for transplantation. The major obstacle currently known to prevent pig to human xenotransplantation is the interaction between the human natural anti-Gal antibody and the alpha-gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R), abundantly expressed on pig cells. This short review describes the characteristics of anti-Gal and of the alpha-gal epitope, their role in inducing xenograft rejection and some experimental approaches for preventing this rejection.  相似文献   

15.
16.
17.
This study investigated whether urea transport mechanisms were present in the gills of the ammoniotelic plainfin midshipman (Porichthys notatus), similar to those recently documented in its ureotelic relative (family Batrachoididae), the gulf toadfish (Opsanus beta). Midshipmen were fitted with internal urinary and caudal artery catheters for repetitive sampling of urine and blood in experiments and radiolabeled urea analogues ([(14)C]-thiourea and [(14)C]-acetamide) were used to evaluate the handling of these substances. Isosmotically balanced infusions of urea were used to raise plasma and urine urea concentrations to levels surpassing physiological levels by 8.5-fold and 6.4-fold, respectively. Despite these high urea levels, there was no observable transport maximum in either renal or branchial urea excretion rate, a result mirrored by the total uptake of fish exposed to a range of environmental urea concentrations. Permeability to urea appeared to be symmetrical in the two directions. At comparable plasma concentrations the branchial clearance rate of acetamide was 74% that of urea while branchial clearance rate of thiourea was 55% that of urea. For influx, the comparable values were 60% and 36%, indicating the same pattern. In contrast, the secretion clearance rate of acetamide by the kidney was 56% that of urea while the rate of thiourea secretion clearance was 137% greater than that of urea, with both urea and thiourea being more concentrated in the urine than in the plasma. In addition, the secretion clearance rates of thiourea and urea were significantly greater than those of water and Cl(-), whereas acetamide, water and Cl(-) were found equally in the plasma and urine, appearing to passively equilibrate between the two fluids. Based on our findings, there appear to be two distinct transport mechanisms involved in urea excretion in the plainfin midshipmen, one in the gill (a facilitated diffusion type transporter) and one in the kidney (an active transport mechanism), each of which does not saturate even at plasma urea concentrations that greatly exceed physiological levels. These transporters appear to be similar to those in the midshipman's ureotelic relative, the gulf toadfish.  相似文献   

18.
Female insects with multiple sperm storage organs may potentially influence patterns of paternity by differential storage of sperm from competing males. The Caribbean Fruit Fly, Anastrepha suspensa, stores sperm differentially with respect to its three spermathecae. To understand the mechanisms and processes responsible for patterns of sperm storage and use in A. suspensa, details of the fine structure of female sperm storage organs were resolved by UV-light microscopy, confocal microscopy, tissue sectioning, and scanning and transmission electron microscopy. Structures not previously described for this species include a ventral receptacle for sperm storage and osmoregulation, a conical-shaped valve at the junction between the spermathecal capsules and their ducts, laminar and granular secretions, secretions from the signum, hemocytes surrounding the spermathecae, and spermathecae with sclerotized, hollow projections that terminate in single glandular cells. The independent organization of sperm storage organs, spermathecal ducts, associated musculature, gland cells, and innervation offer possible mechanisms by which sperm movement may be influenced by females. The implications of these structures for insemination and fertilization events are discussed.  相似文献   

19.
This study evaluated the hypothesis that the pulsatile excretion of urea by toadfish could serve as a social signal. In the first experiment, physiological parameters were measured in pairs of dominant and subordinate toadfish. Subordinate toadfish had elevated concentrations of circulating plasma cortisol, an effect maintained even after cannulation. In the second experiment, one fish of a pair was injected with 14C-urea, and the occurrence of urea pulses during social encounters was documented. Social status did not influence the order of pulsing, that is, whether a dominant or subordinate fish pulsed first during a social encounter. However, in seven out of eight pairs, both toadfish pulsed within 2 h of each other, indicating some form of communication between fish. In the third and final experiment, the response of toadfish to urea (natural or synthetic) was observed. There was a tendency for toadfish to avoid synthetic urea but there was no apparent behavioural response to water containing toadfish urea. Pulsing events do not appear to play an integral role during social encounters as previously hypothesised, but the close timing of pulses in toadfish pairs suggests some transfer of information.  相似文献   

20.
Summary Serial sections of the vestibular ampullae of two species of fish and one species of frog were investigated by electron microscopy. The kinocilium is the only connection between the sensory cells and the auxiliary structure (cupula). The cupula possesses canals that traverse its entire height. Each canal contains a single kinocilium in its proximal part; distally, it is filled with material that stains with colloidal silver. The matrix of the cupula consists of filaments running perpendicular to the canals. These filaments do not stain with colloidal silver. The kinocilium is connected to the wall of the canal via structures that differ in the studied species of fish and frog. The filamentous links between the kinocilium and the longest stereovilli of the sensory hair bundle are similar in all the investigated species. The stereovilli are interconnected by basal and shaft links, and by horizontal and oblique tip connectors, similar to those described by other authors for macula organs and the organ of Corti, although differences in structural details, especially of the horizontal tip and the shaft connectors, are present. Some of these are species specific and some are related to the position of the sensory cell in the epithelium and/or specific to the organ (ampulla or macula organ). Some attachment sites of the links are associated with osmiophilic submembranous material. These differences in the structure, distribution and attachment sites of the links are possibly of functional importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号