首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population dynamics in the enteric connective tissues of eosinophils, mucosal mast cells (MMC), and in the mucosal epithelium of goblet cells were examined morphometrically in fixed ileal tissue of outbred Sprague Dawley rats during the first 32 days of infection with the tapeworm Hymenolepis diminuta. MMC and eosinophils were present in the lamina propria and submucosa; however, only eosinophils were also present in the muscularis externa. Eosinophilic infiltrate was first observed in the lamina propria at 15 days postinfection (dpi) and the numbers of eosinophils remained elevated through 32 dpi. Initial mucosal mastocytosis was detected on 6 dpi and MMC numbers continued to rise over the study period without reaching a plateau. Goblet cell hyperplasia occurred only at 32 dpi. In contrast to some intestinal nematode infections where these same 3 cell types are associated with the host's expulsion responses, H. diminuta is not lost by a rapid host response in the outbred Sprague Dawley rat strain used in these experiments. We suggest that either the induction of hyperplasia of these host effector cells in ileum tissue during H. diminuta infection is not capable of triggering parasite rejection mechanisms, or the function of the induced hyperplasia is necessary for some as yet unassociated physiological or tissue architecture change in the host's intestine.  相似文献   

2.
3',5'-Cyclic guanosine monophosphate (cGMP), a well-known intracellular second messenger, is released to the intestinal lumen by the tapeworm, Hymenolepis diminuta. Enzyme-linked immunosorbent assay analysis of tapeworm conditioned media shows that cGMP is released at a constant rate. Multidrug resistant (MDR) proteins are efflux transporters for cyclic nucleotides. Two MDR inhibitors, niflumic acid and zaprinast, inhibit cGMP secretion by tapeworms and change the cGMP localization within the tapeworm tegument, as assessed by immunochemistry. cGMP, normally present throughout the tapeworm tegumental cytoplasm, is absent from the outer cytoplasmic band upon treatment with inhibitors. Inhibition of cGMP secretion by colchicine indicates that cGMP secretion is cytoskeleton dependent. Binding studies of [3H]cGMP to ileal segments of intestine demonstrate 2 saturable, reversible, and high-affinity binding sites. These studies demonstrate that cGMP is secreted from the cestode via a cytoskeleton-dependent mechanism and MDR efflux transporters. In addition, cGMP reaching the intestinal lumen can bind to the mucosa via receptors for cGMP. These data, combined with earlier observations of cGMP altering intestinal motility and slowing lumenal transit, indicate that tapeworms alter the physiology of the host digestive process via the secretion and binding of extracellular cGMP to lumenal receptors in the host intestine.  相似文献   

3.
Na+ transport studies in intestinal epithelial cells indicate that enterocytes from different regions of the small intestine differ in their response to actively transported sugars. 1. Compared with sugar-free medium total Na+ efflux rate constants from isolated rat jejunal cells were significantly increased when medium contained actively transported sugars, glucose and galactose, but not when medium contained fructose. 2 In contrast total Na+ efflux rate constants from isolated rat ileal cells did not respond to actively transported sugars, glucose and galactose. 3. Similar results for the effect of actively transported sugars on Na+ ellux were obtained for isolated rabbit jejunal and ileal epithelial cells. 4. Passive Na+ efflux rate constants for isolated jejunal and ileal enterocytes are not significantly different, indicating similiar permeability characteristics.  相似文献   

4.
We sought to determine whether gut-derived microbial factors influence the hepatic or intestinal inflammatory response to hemorrhagic shock and resuscitation (HS/R). Conventional and gnotobiotic mice contaminated with a defined microbiota without gram-negative bacteria were subjected to either a sham procedure or HS/R. Tissue samples were obtained 4 h later for assessing ileal mucosal permeability to FITC dextran and hepatic and ileal mucosal steady-state IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and TNF mRNA levels. Whereas HS/R significantly increased ileal mucosal permeability in conventional mice, this effect was not apparent in gnotobiotic animals. HS/R markedly increased hepatic mRNA levels for several proinflammatory genes in both conventional and gnotobiotic mice. HS/R increased ileal mucosal IL-6 and COX-2 mRNA expression in conventional but not gnotobiotic mice. If gnotobiotic mice were contaminated with Escherichia coli C25, HS/R increased ileal mucosal permeability and upregulated expression of IL-6 and COX-2. These data support the view that the hepatic inflammatory response to HS/R is largely independent of the presence of potentially pathogenic gram-negative bacteria colonizing the gut, whereas the local mucosal response to HS/R is profoundly influenced by the microbial ecology within the lumen during and shortly after the period of hemorrhage.  相似文献   

5.
K Schümann  K Osterloh  W Forth 《Blut》1986,53(5):391-400
Isolated non blood-perfused intestinal segments from normal and iron-deficient rats were used in vitro. A modification of the luminal perfusion method according to Fisher and Parsons allowed the comparison of iron and transferrin quantities in the serosal fluid at 15 min intervals. Iron transfer in jejunal and ileal segments was directly proportional to the luminal iron concentration within a dose range of 1 to 100 mumol/l, did not show saturation characteristics and was linear over time. Jejunal segments from iron-deficient rats transferred about twice as much iron as the jejunal controls. In ileal segments there was no difference in iron transfer between iron-deficient and control rats; in both cases transfer amounted to approx. 10% of jejunal controls. An exponential correlation was found, when the decreasing transferrin content of the tissue was plotted against the cumulative water transport. Transferrin and albumin release from jejunal and ileal segments into the absorbate cumulated asymptotically, which is typical for wash-out phenomena. As iron transfer cumulated linearly while transferrin release cumulated in an asymptotic manner, the capacity of transferrin to bind iron ions is exceeded roughly 100 times by molar equivalents of iron in the last absorbate fractions. Independence of iron transfer from mucosal transferrin quantities is concluded. As the molar transferrin/albumin ratios do not show significant differences between plasma and the sequence of absorbate samples, a wash-out from the gut's interstitial space is assumed, which makes plasma the most likely origin of transferrin in the mucosa.  相似文献   

6.
Tapeworms alter the physiological environment of the host's small intestinal lumen by contracting the intestinal smooth muscle, thereby slowing the transit of intestinal contents. We hypothesize that parasite-to-host molecular signaling is responsible for the specific patterns of small intestinal smooth muscle contraction observed both during tapeworm infection and after the infusion of tapeworm-secreted molecules into the intestinal lumen of unanesthetized rats. Of the tapeworm-secreted compounds tested, only lumenal infusion of guanosine 3',5'-cyclic monophosphate (cGMP) induced contractile patterns that mimic those observed during tapeworm infection. The response to cGMP occurred in a concentration-dependent fashion. Our study clearly demonstrates that cGMP can serve as an extracellular signal molecule regulating small intestinal motility mechanisms in vivo.  相似文献   

7.
Eight groups of rats were used to study the involvement of the enteric (ENS) and central (CNS) nervous systems in the development of Hymenolepis diminuta using surgical intestinal transection, or CNS denervation, or both procedures. The transection procedure was used to isolate the ENS of the small intestine from either orad and/or caudal portions of the alimentary system, while the CNS denervation was used to eliminate direct visceral efferent inputs from the CNS. Nine days after the surgical procedures, all rats were infected with 35 cysticercoids of H. diminuta. On 20 days postinfection, the infection intensity, tapeworm dry weight, tapeworm morphology, intestine length, and intestinal wet weight were recorded. Only the combination of the duodenal and ileal transections with a CNS denervation reduced infection intensity and prevented the increased intestinal length normally observed in infected rats. In contrast, none of the various intestinal transection procedures alone or CNS denervation alone had any effect on the survival, ability to produce oncospheres or morphology of the tapeworms. In conclusion, tapeworm survival is decreased when both CNS and ENS inputs into the small intestine are altered or absent.  相似文献   

8.
In the present study, we investigated whether intestinal sterol efflux transporters Abcg5 and Abcg8 play a major role in determining variations in cholesterol (Ch) absorption efficiency, and we compared the physiological functions of the duodenal, jejunal, and ileal Abcg5 and Abcg8 on the absorption of Ch and sitostanol in inbred mice challenged with various amounts of Ch, sitostanol, hydrophilic, or hydrophobic bile acids. We found that Abcg5 and Abcg8 in the jejunum and ileum, but not in the duodenum, were main factors in determining, in part, variations in Ch absorption efficiency. The jejunal and ileal Abcg5 and Abcg8 played a major regulatory role in response to high dietary cholesterol and were more sensitive in the regulation of Ch absorption when compared with sitostanol absorption. These results, combined with different sterol uptake rates, suggest that the absorption efficiency of Ch and sitostanol is determined by the net results between influx and efflux of intraluminal Ch and sitostanol molecules crossing the apical membrane of the enterocyte. Hydrophilic and hydrophobic bile acids influenced Ch absorption through mediating Ch solubilization and its physical-chemical state within the small intestinal lumen. We conclude that Ch absorption is mainly regulated by the jejunal and ileal Abcg5 and Abcg8 in mice.  相似文献   

9.
Sepsis is associated with increased intestinal permeability, but mediators and mechanisms are not fully understood. We examined the role of interleukin (IL)-6 and IL-10 in sepsis-induced increase in intestinal permeability. Intestinal permeability was measured in IL-6 knockout (IL-6 -/-) and wild-type (IL-6 +/+) mice 16 h after induction of sepsis by cecal ligation and puncture or sham operation. In other experiments, mice or intestinal segments incubated in Ussing chambers were treated with IL-6 or IL-10. Intestinal permeability was assessed by determining the transmucosal transport of the 4.4-kDa marker fluorescein isothiocyanate conjugated dextran and the 40-kDa horseradish peroxidase. Intestinal permeability for both markers was increased in septic IL-6 +/+ mice but not in septic IL-6 -/- mice. Treatment of nonseptic mice or of intestinal segments in Ussing chambers with IL-6 did not influence intestinal permeability. Plasma IL-10 levels were increased in septic IL-6 -/- mice, and treatment of septic mice with IL-10 resulted in reduced intestinal permeability. Increased intestinal permeability during sepsis may be regulated by an interaction between IL-6 and IL-10. Treatment with IL-10 may prevent the increase in mucosal permeability during sepsis.  相似文献   

10.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled D-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to D-glucose transport.  相似文献   

11.
The secretion of digoxin and digitoxin into in situ perfused jejunal and colonic segments of normal or quinidine treated guinea pigs was studied. Quinidine was administered intravenously by constant rate infusion resulting in a quinidine plasma concentration of about 6 micrograms/ml. After 2 h digoxin or digitoxin was injected i.v. (10 micrograms/kg). The quinidine treatment enhanced the plasma concentration of [3H]digoxin to about 140% as compared to controls, whereas the [3H]digitoxin concentration was not influenced by the quinidine infusion. Both, digoxin and digitoxin were secreted against a concentration gradient into the intestinal lumen. During the experimental period of 180 min controls secreted 0.24% of the administered digoxin dose per cm of jejunal and 0.13% per cm of colonic segment. Quinidine treatment resulted in a decrease of the jejunal digoxin secretion to about 80% of the control values. In both, jejunum and colon the concentration ratio between lumen and plasma (L/P) was diminished by quinidine to 50% as compared with the controls. The amount of [3H]digitoxin secreted into the intestinal segments was decreased by quinidine from 0.19% of the dose/cm to 0.13% in the jejunal and from 0.17% to 0.12% in the colonic segments, respectively. The decrease of the L/P ratio for [3H]digitoxin was more pronounced in the colon (58%) than in the jejunum (77% of the control values). As compared with controls the content of [3H]digoxin in the jejunal as well as colonic tissue was decreased by quinidine to 60% or 73%, respectively. On the other hand quinidine increased the tissue content of [3H]digitoxin in jejunum (+56%) and colon (+88%). In conclusion quinidine inhibits the intestinal secretion of both, digoxin and digitoxin, possibly by different mechanisms.  相似文献   

12.
The intestinal uptake of 0.5 and 40 mM glucose, galactose, and 3-O-methyl glucose (3-O-MG) was examined in vitro in rabbits fed a high (HS) or a low (LS) sucrose diet. In animals with an intact intestinal tract, the jejunal uptake of 0.5 mM 3-O-MG was unaffected by the dietary content of sucrose, whereas the uptake of 40 mM 3-O-MG was lower in LS than HS. The uptake of 40 mM galactose was higher in LS than HS and the uptake of 0.5 mM galactose was similar in HS and LS, whereas the uptake of 0.5 mM but not 40 mM glucose was lower in LS than HS. In animals subjected 6 weeks previously to an ileal resection, the adaptive changes in the jejunal uptake of the hexoses in response to alterations in the dietary content of sucrose differed from the changes observed in rabbits with an intact intestinal tract. For example, feeding HS to ileal resected animals was associated with increased jejunal uptake of 40 mM galactose, decreased uptake of 40 mM glucose, and unchanged uptake of 40 mM 3-O-MG; whereas in control animals with an intact intestinal tract, feeding HS resulted in increased uptake of 40 mM 3-O-MG, decreased uptake of 40 mM galactose, and no change in the uptake of 40 mM glucose. A similar adaptive pattern was noted in the jejunum and ileum for the effect of dietary sucrose on the uptake of 0.5 and 40 mM glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We examined the impact of chronic stress on rat growth rate and intestinal epithelial physiology and the role of mast cells in these responses. Mast cell-deficient (Ws/Ws) rats and +/+ littermate controls were submitted to water avoidance stress or sham stress, 1 h/day, for 5 days. Seven hours after the last sham or stress session, jejunal segments were mounted in Ussing chambers, in which secretion and permeability were measured. Body weight (as a growth index) and food intake were determined daily. Stress increased baseline jejunal epithelial ion secretion (indicated by short-circuit current), ionic permeability (conductance), and macromolecular permeability (horseradish peroxidase flux) in +/+ rats, but not in Ws/Ws rats, compared with nonstressed controls. Stress induced weight loss and reduced food intake similarly in the groups. In +/+ rats, these parameters remained altered 24-72 h after the cessation of stress. Modulation of stress-induced mucosal mast cell activation may help in the management of certain intestinal conditions involving epithelial pathophysiology.  相似文献   

14.
Previous studies have shown that external abdominal irradiation is associated with alterations in intestinal morphology and function. The activity of the jejunal brush border membrane (BBM) enzyme markers sucrase (S) and alkaline phosphate (AP) were not altered by 600 rad irradiation in the rat. In contrast, ileal BBM, AP, and AP/S were increased 3, 7/8, and 28 days postirradiation. The total lipid composition of the jejunal BBM was lower than in control animals only at 3 days postirradiation; this was due to a decrease in the total free fatty acid content. In addition to a lower total free fatty acid content, the ileal BBM contained an increased amount of total phospholipid (PL) which resulted in an increased phospholipid/cholesterol ratio at 3 days following irradiation. Variations in the BBM phospholipid composition occurred in both jejunum and ileum. In the jejunal BBM, the phospholipid composition changes did not alter the choline or amine phospholipid content; therefore, the choline/amine phospholipid ratio was unaffected by irradiation at 600 rad. In the ileal BBM, the phosphatidyl ethanolamine was increased at 3, 7/8, 14, and 28 days following irradiation. The choline/amine phospholipid ratio was not altered in the ileal BBM due to concomitant increases in lecithin content. Jejunal villus height, villus surface area, and the number of cells per villus were decreased at 3 days postirradiation, but increased by day 7/8 and 14 postirradiation to levels much higher than observed in control jejunal villi. The mucosal surface area was decreased at 3 and 7/8 days following irradiation but returned to control values by Day 14. Jejunal microvillus morphology was unaffected by irradiation. Few significant changes were observed in ileal villus morphology following irradiation at 600 rad. Ileal villus height, villus surface area, and mucosal surface area did not change, but the number of cells per villus initially decreased at 3 days and then increased beyond control values at 7/8 and 14 days postirradiation. Ileal microvillus height was significantly decreased only at 7 days postirradiation, while the number of microvilli per micron was increased only at 3 days postirradiation. This study suggests that changes in intestinal morphology and brush border composition may contribute to the altered passive permeation toward lipids which has been reported following abdominal radiation.  相似文献   

15.
In intestinal ischemia, inflammatory mediators in the small intestine''s lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases) and apoptosis contribute to the increased transmural permeability of the intestine''s wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein) in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP) inhibitors (doxycycline, GM 6001), and serine protease inhibitor (tranexamic acid) in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation) for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid) did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen across the wall and enteral proteolytic inhibition attenuates tissue breakdown. These combined interventions ameliorate lesion formation in the small intestine after hemorrhagic shock.  相似文献   

16.
The present study is an investigation of the effects of 12- to 96-hours' starvation and 96-hours' starvation plus 48-hours' refeeding on both somatostatin-like immunoreactivity (SLI) and cytosolic somatostatin binding sites in rabbit small intestinal mucosa. The SLI concentration increased after 24 h in duodenal and jejunal mucosa, but not in ileal mucosa, and reached its highest value after 96 h of fasting. The number of specific high and low-affinity somatostatin binding sites, but not their affinity, decreased with the duration of fasting in the same gut segments, refeeding of fasted animals resulted in a return to normal control values for small intestine mucosal SLI and somatostatin binding.  相似文献   

17.
2-week isocaloric modifications in the dietary ratio of polyunsaturated/saturated fatty acids (P/S) alters intestinal transport in rats. This study was undertaken to test the hypotheses that (1) the fatty acid composition of a nutritionally adequate diet in early life has lasting consequences for active and passive intestinal transport processes; and (2) early life feeding experiences with diets of varying fatty acid composition influence the intestines' ability to adaptively up- or down-regulate intestinal transport in later life. Female Sprague-Dawley rats were weaned onto S or P and were maintained on these diets for 2, 10 or 12 weeks. An in vitro uptake technique was used in which the bulk phase was vigorously stirred to reduce the effective resistance of the intestinal unstirred water layer. P decreased and S increased the uptake of glucose, and this effect was progressive from 2 to 12 weeks. Switching from a P to an S diet decreased jejunal but increased ileal uptake of glucose, whereas switching from an S to a P diet was associated with a decline in both the jejunal and the ileal uptake of glucose. The ileal uptake of galactose increased as the animals grew on either P or S. Switching from P to S resulted in a decline in ileal uptake of galactose, whereas the opposite effect was observed when switching from S to P. The effect of feeding P or S on hexose uptake was influenced by the animals' dietary history: ileal glucose and galactose uptake was lower in animals fed P at an early age (PSP) than in animals fed P for the first time in later life (SSP). Jejunal glucose and galactose uptake was also lower in animals fed S at an early age (SPS) than in those fed S for the first time in later life (PPS). The alterations in the uptake of long-chain saturated and unsaturated fatty acids and cholesterol did not progress with longer periods of feeding, and in the jejunum, lipid uptake did not change when switching from P to S or S to P. Early feeding with P (PSP vs. SSP) was associated with lower jejunal uptake of 18:3 and lower ileal uptake of 12:0, whereas previous feeding with S (SPS vs. PPS) was associated with lower ileal uptake of cholesterol. The changes in uptake of hexoses and lipids was not explained by differences in the animals' food consumption, body or intestinal weight or mucosal surface area.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The aim of this experiment was to study the patterns of betaine accumulation into intestinal tissue, liver and plasma of broiler chicks with or without coccidial infection. The chicks were raised on a corn-based, low-betaine diet with or without 1000 ppm betaine supplementation and with or without intestinal microparasite (Eimeria maxima) challenge to the age of 21 days. Plasma, liver, intestinal tissue and digesta of non-challenged (NC) birds and plasma and intestinal tissue of coccidiosis challenged (CC) birds were analysed for betaine content. NC birds were also analyzed for homocysteine in plasma and S-adenosylmethionine (S-AM) in liver. The jejunal epithelium was histologically examined for the presence of coccidia and the crypt-villus ratio was measured. Dietary betaine supplementation decreased the plasma homocysteine concentration but had no effect on liver S-AM of NC birds. The data suggest that chicks on a low-betaine diet accumulate betaine into the intestinal tissue. When the diet was supplemented with betaine, betaine accumulated heavily into liver and to a lesser degree into intestinal tissue. The concentration of betaine in jejunal and ileal digesta was low suggesting that dietary betaine was mainly absorbed from the proximal small intestine. The coccidial challenge decreased the concentration of betaine in the liver, but greatly increased that in the intestinal tissue. The crypt-villus ratio was decreased by the dietary betaine supplementation in healthy and challenged chicks, suggesting that dietary betaine both protects the jejunal villi against coccidial infection and also stabilizes the mucosal structure in healthy broiler chicks. These results support our earlier findings suggesting that betaine is likely to act as an important intestinal osmolyte in broiler chicks.  相似文献   

19.
Patients with severe short-bowel syndrome (SBS) often require long-term total parenteral nutrition (TPN) to maintain their nutritional status because of limited intestinal adaptation. Growth factors, including insulin-like growth factor I (IGF-I), are under investigation to promote intestinal adaptation and tolerance to oral feeding. We investigated structural and functional adaptation of the jejunum and colon in four groups of rats maintained with TPN for 7 days after a 60% jejunoileal resection and cecectomy or sham surgery and treatment with IGF-I or vehicle. Resection alone did not stimulate jejunal growth. IGF-I significantly increased jejunal mucosal mass, enterocyte proliferation, and migration rates. IGF-I decreased jejunal sucrase specific activity and reduced active ion transport and ionic permeability; resection alone had no effect. In contrast, resection significantly increased colonic mass and crypt depth but had no effect on active ion transport or ionic permeability. IGF-I had minimal effects on colonic structure. IGF-I but not resection stimulates jejunal adaptation, whereas resection but not IGF-I stimulates colonic growth in rats subjected to a model for human SBS. IGF-I treatment may improve intestinal adaptation in humans with SBS.  相似文献   

20.
Local and systemic control mechanisms have been postulated to explain the maintenance of steady state cell renewal in intestinal epithelium. Permanent alterations of cell renewal resulting in a new steady state imply alterations in control. Intestinal resection appears to cause such alterations resulting in hyper-plasia of the residual intestine. To test the hypothesis of a systemic control, the effect of 60% mid-intestinal resection on Thiry-Vella fistulae of both jejunal and ileal origin was observed in rats. Results showed that hypoplasia occurred in fistulae without resection of the remaining intestine in continuity. Cell counts of crypt and villus columns and tritiated thymidine uptake in isolated whole crypts were reduced. Scanning electron microscopy showed marked hypoplastic alterations in villi. However, when 60% of the intestine in continuity was resected, hyperplasia occurred not only in the residual intestine but in the fistulae of both jejunal and ileal origin. Cell counts of villus and crypt columns were increased along with increased tritiated thymidine uptake per crypt. Neutral cc-glucosidase and non-specific esterase activities did not change as a result of resection but the activities of both enzymes were greater in ileal fistulae than in ileum in situ. Observations on the different resection response of the jejunal versus ileal fistulae lead to a distinction between inherent and induced differences within the small intestine. This study suggests a systemic control of cell renewal. A possible mechanism involving intestinal vascular physiology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号