首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin‐II, the retrograde motor IFT dynein, and the IFT‐A and ‐B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT‐B protein IFT54 interacts with both kinesin‐II and IFT dynein and regulates anterograde IFT. Deletion of residues 342–356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin‐II and this interaction was strengthened for the IFT54Δ342–356 mutant in vitro and in vivo. The deletion of residues 261–275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261–275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.  相似文献   

2.
《Current biology : CB》2022,32(18):4071-4078.e4
  1. Download : Download high-res image (296KB)
  2. Download : Download full-size image
  相似文献   

3.
The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.  相似文献   

4.
The intraflagellar transport (IFT) system is required for building primary cilia, sensory organelles that cells use to respond to their environment. IFT particles are composed of about 20 proteins, and these proteins are highly conserved across ciliated species. IFT25, however, is absent from some ciliated organisms, suggesting that it may have a unique role distinct from ciliogenesis. Here, we generate an Ift25 null mouse and show that IFT25 is not required for ciliary assembly but is required for proper Hedgehog signaling, which in mammals occurs within cilia. Mutant mice die at birth with multiple phenotypes, indicative of Hedgehog signaling dysfunction. Cilia lacking IFT25 have defects in the signal-dependent transport of multiple Hedgehog components including Patched-1, Smoothened, and Gli2, and fail to activate the pathway upon stimulation. Thus, IFT function is not restricted to building cilia where signaling occurs, but also plays a separable role in signal transduction events.  相似文献   

5.
Calcium plays a regulatory role in several aspects of protein trafficking in the cell. Both vesicle fusion and vesicle formation can be inhibited by the addition of calcium chelators. Because the effects of calcium chelators have been studied predominantly in cell-free systems, it is not clear exactly which transport steps in the secretory pathway are sensitive to calcium levels. In this regard, we have studied the effects of calcium chelators on both anterograde and retrograde protein transport in whole cells. Using both cytochemical and biochemical analyses, we find that the anterograde-directed exit of vesicular stomatitis virus G protein and the retrograde-directed exit of Shiga toxin from the Golgi apparatus are both inhibited by calcium chelation. The exit of vesicular stomatitis virus G from a pre-Golgi compartment and the exit of Shiga toxin from an endosomal compartment are sensitive to the membrane-permeant calcium chelator 1,2-bis(2-amino phenoxy)ethane-N,N,N',N'-tetraacetic acid-tetrakis (acetoxymethyl ester) (BAPTA-AM). By contrast, endoplasmic reticulum exit and endocytic internalization from the plasma membrane are not affected by BAPTA. Together, our data show that some, but not all, trafficking steps in the cell may be regulated by calcium. These studies provide a framework for a more detailed analysis of the role of calcium as a regulatory agent during protein transport.  相似文献   

6.
Required for the assembly and maintenance of eukaryotic cilia and flagella, intraflagellar transport (IFT) consists of the bidirectional movement of large protein particles between the base and the distal tip of the organelle. Anterograde movement of particles away from the cell body is mediated by kinesin-2, whereas retrograde movement away from the flagellar tip is powered by cytoplasmic dynein 1b/2. IFT particles contain multiple copies of two distinct protein complexes, A and B, which contain at least 6 and 11 protein subunits, respectively. In this study, we have used increased ionic strength to remove four peripheral subunits from the IFT complex B of Chlamydomonas reinhardtii, revealing a 500-kDa core that contains IFT88, IFT81, IFT74/72, IFT52, IFT46, and IFT27. This result demonstrates that the complex B subunits, IFT172, IFT80, IFT57, and IFT20 are not required for the core subunits to stay associated. Chemical cross-linking of the complex B core resulted in multiple IFT81-74/72 products. Yeast-based two-hybrid and three-hybrid analyses were then used to show that IFT81 and IFT74/72 directly interact to form a higher order oligomer consistent with a tetrameric complex. Similar analysis of the vertebrate IFT81 and IFT74/72 homologues revealed that this interaction has been evolutionarily conserved. We hypothesize that these proteins form a tetrameric complex, (IFT81)2(IFT74/72)2, which serves as a scaffold for the formation of the intact IFT complex B.  相似文献   

7.
Intraflagellar transport (IFT) is a motility in which particles composed of at least 17 polypeptides move underneath the flagellar membrane. Anterograde (outward) and retrograde (inward) movements of these IFT particles are mediated by FLA10 kinesin-II and cytoplasmic dynein DHC1b, respectively. Mutations affecting IFT particle polypeptides or motors result in the inability to assemble flagella. IFT particles and the motors moving them are located principally around the basal bodies as well as in the flagella. Here, we clone the cDNA encoding one of the IFT particle proteins, IFT52, and show by immunofluorescence that while some IFT52 is in the flagella, the majority is found in two horseshoe-shaped rings around the basal bodies. Immunoelectron microscopy indicates that IFT52 is associated with the periphery of the transitional fibers, which extend from the distal portion of the basal body to the cell membrane and demarcate the entrance to the flagellar compartment. This localization suggests that the transitional fibers form a docking complex for the IFT particles destined for the flagellum. Finally, the flagellaless mutant bld1 completely lacks IFT52 due to a deletion in the gene encoding IFT52.  相似文献   

8.
Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the crystal structures of C. reinhardtii IFT70/52 and Tetrahymena IFT52/46 subcomplexes. The 2.5-Å resolution IFT70/52 structure shows that IFT52330–370 is buried deeply within the IFT70 tetratricopeptide repeat superhelix. Furthermore, the polycystic kidney disease protein IFT88 binds IFT52281–329 in a complex that interacts directly with IFT70/IFT52330–381 in trans. The structure of IFT52C/IFT46C was solved at 2.3 Å resolution, and we show that it is essential for IFT-B core integrity by mediating interaction between IFT88/70/52/46 and IFT81/74/27/25/22 subcomplexes. Consistent with this, overexpression of mammalian IFT52C in MDCK cells is dominant-negative and causes IFT protein mislocalization and disrupted ciliogenesis. These data further rationalize several ciliogenesis phenotypes of IFT mutant strains.  相似文献   

9.
Cilia have diverse roles in motility and sensory reception and their dysfunction contributes to cilia-related diseases. Assembly and maintenance of cilia depends on the intraflagellar transport (IFT) of axoneme, membrane, matrix and signalling proteins to appropriate destinations within the organelle. In the current model, these diverse cargo proteins bind to multiple sites on macromolecular IFT particles, which are moved by a single anterograde IFT motor, kinesin-II, from the ciliary base to its distal tip, where cargo-unloading occurs. Here, we describe the observation of fluorescent IFT motors and IFT particles moving along distinct domains within sensory cilia of wild-type and IFT-motor-mutant Caenorhabditis elegans. We show that two anterograde IFT motor holoenzymes, kinesin-II and Osm-3-kinesin, cooperate in a surprising way to control two pathways of IFT that build distinct parts of cilia. Instead of each motor independently moving its own specific cargo to a distinct destination, the two motors function redundantly to transport IFT particles along doublet microtubules adjacent to the transition zone to form the axoneme middle segment. Next, Osm-3-kinesin alone transports IFT particles along the distal singlet microtubules to stabilize the distal segment. Thus, the subtle coordinate activity of these IFT motors creates two sequential transport pathways.  相似文献   

10.
We describe GIFT [for GldG, intraflagellar transport (IFT)] domains in the flavobacterial gliding protein GldG and eukaryotic IFT-52. In eukaryotes, domain homologues are also found in the eukaryotic oligosaccharyltransferase complex and in subtilisin kexin isozyme-1 (SKI-1 or S1P). A distant evolutionary relationship to periplasmic-binding proteins hints that GIFT domains might possess oligosaccharide-binding functions.  相似文献   

11.
Small lesions centered in the posterodorsal region of the medial amygdala resulted in excessive weight gains in female rats. Unilateral lesions were nearly as effective as bilateral lesions in the first 48 h after surgery (+21 to +32 g). Assessment of lesion damage was done by both qualitative evaluation and by a quantitative grid-point counting method. The critical sites for weight gain were the intra-amygdaloid bed nucleus of the stria terminalis and the posterodorsal medial amygdaloid nucleus. Incidental damage to the overlying globus pallidus was negatively related to weight gain. The cupric silver method for demonstrating axonal degeneration was applied to brains with obesity-inducing lesions. A dense pattern of degenerating terminals was found in the lateral septum, amygdala, ventral striatum, and ventromedial hypothalamus. Degeneration in the paraventricular nucleus of the hypothalamus was scarce or absent. Small retrograde tracer injections made in either the intra-amygdaloid bed nucleus of the stria terminalis or in the posterodorsal medial amygdaloid nucleus labeled cells in the amygdala, lateral septum, and hypothalamus, reciprocating the anterograde projections from the amygdala to these areas. The data suggest that subdivisions of the posterodorsal amygdala participate in the regulation of feeding in a manner that is similar to the better-known role of this part of the brain in mediating reproductive behavior. Although topographical differences may exist within the amygdaloid and hypothalamic subdivisions regulating these two sexually dimorphic behaviors, the relays engaged by feeding-related connections and those related to reproduction are remarkably parallel.  相似文献   

12.
13.
The assembly and maintenance of cilia require intraflagellar transport (IFT), a microtubule-dependent bidirectional motility of multisubunit protein complexes along ciliary axonemes. Defects in IFT and the functions of motile or sensory cilia are associated with numerous human ailments, including polycystic kidney disease and Bardet-Biedl syndrome. Here, we identify a novel Caenorhabditis elegans IFT gene, IFT-associated gene 1 (ifta-1), which encodes a WD repeat-containing protein with strong homology to a mammalian protein of unknown function. Both the C. elegans and human IFTA-1 proteins localize to the base of cilia, and in C. elegans, IFTA-1 can be observed to undergo IFT. IFTA-1 is required for the function and assembly of cilia, because a C. elegans ifta-1 mutant displays chemosensory abnormalities and shortened cilia with prominent ciliary accumulations of core IFT machinery components that are indicative of retrograde transport defects. Analyses of C. elegans IFTA-1 localization/motility along bbs mutant cilia, where anterograde IFT assemblies are destabilized, and in a che-11 IFT gene mutant, demonstrate that IFTA-1 is closely associated with the IFT particle A subcomplex, which is implicated in retrograde IFT. Together, our data indicate that IFTA-1 is a novel IFT protein that is required for retrograde transport along ciliary axonemes.  相似文献   

14.
Eukaryotic cilia are assembled via intraflagellar transport (IFT) in which large protein particles are motored along ciliary microtubules. The IFT particles are composed of at least 17 polypeptides that are thought to contain binding sites for various cargos that need to be transported from their site of synthesis in the cell body to the site of assembly in the cilium. We show here that the IFT20 subunit of the particle is localized to the Golgi complex in addition to the basal body and cilia where all previous IFT particle proteins had been found. In living cells, fluorescently tagged IFT20 is highly dynamic and moves between the Golgi complex and the cilium as well as along ciliary microtubules. Strong knock down of IFT20 in mammalian cells blocks ciliary assembly but does not affect Golgi structure. Moderate knockdown does not block cilia assembly but reduces the amount of polycystin-2 that is localized to the cilia. This work suggests that IFT20 functions in the delivery of ciliary membrane proteins from the Golgi complex to the cilium.  相似文献   

15.
Cilia and flagella are complex structures emanating from the surface of most eukaroytic cells and serve important functions including motility, signaling, and sensory reception. A process called intraflagellar transport (IFT) is of central importance to ciliary assembly and maintenance. The IFT complex is required for this transport and consists of two distinct multisubunit subcomplexes, IFT-A and IFT-B. Despite the importance of the IFT complex, little is known about its overall architecture. This paper presents a biochemical dissection of the molecular interactions within the IFT-B core complex. Two stable subcomplexes consisting of IFT88/70/52/46 and IFT81/74/27/25 were recombinantly co-expressed and purified. We identify a novel interaction between IFT70/52 and map the interaction domains between IFT52 and the other subunits within the IFT88/70/52/46 complex. Additionally, we show that IFT52 binds directly to the IFT81/74/27/25 complex, indicating that it could mediate the interaction between the two subcomplexes. Our data lead to an improved architectural map for the IFT-B core complex with new interactions as well as domain resolution mapping for several subunits.  相似文献   

16.
Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement.  相似文献   

17.
We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direct involvement of ciliary assembly pathway components in cytokinesis. Spontaneous partial suppressors of the IFT52 null mutants occurred, which assembled cilia at high cell density and resorbed cilia at low cell density. The stimulating effect of high cell density on cilia formation is based on the creation of pericellular hypoxia. Thus, at least under certain conditions, ciliary assembly is affected by an extracellular signal and the Ift52p function may be integrated into signaling pathways that regulate ciliogenesis.  相似文献   

18.
To assay the detailed structural relationship between axonally transported vesicles and their substrate microtubules, vesicle transport was focally cold blocked in axoplasm that was extruded from the squid giant axon. A brief localized cold block concentrated anterogradely and retrogradely transported vesicles selectively on either the proximal or or distal side of the block. Normal movement of the concentrated vesicles was reactivated by rewarming the cold-blocked axoplasm. At the periphery of the axoplasm, moving vesicles were located on individual microtubules that had become separated from the other cytomatrix components. The presence of moving vesicles on isolated microtubules permitted the identification of the structural components required for vesicle transport along microtubules. The results show that 16-18-nm cross-bridges connect both anterogradely and retrogradely moving vesicles to their substrate microtubules. These observations demonstrate that cross-bridges are fundamental are fundamental components of vesicle transport along axonal microtubules. Thus, vesicle transport can now be included among those cell motile systems such as muscle and axonemes that are based on a cross-bridge-mediated mechanism.  相似文献   

19.
A. Grębecki 《Protoplasma》1987,141(2-3):126-134
Summary The transverse velocity profiles of the anterograde flow of particles on the cell surface and around it are approximately parabolic. The peak velocity is recorded close to the membrane and the descendent arm of the profile is viscosity-dependent. It indicates that the extracellular forward flow is probably generated by a forward movement of the fluid fraction of the membrane itself. The retrograde component of extracellular movements is manifested by particles kept on the cell surface by adhesion, which behave exactly as the ectoplasmic layer on the opposite side of the membrane,i.e., they probably reflect the movement of that fraction of the surface material which is attached to the cortical microfilaments. In the longitudinal profile, the velocity of anterograde flow rises from the tail to the front of amoeba, but is generally related to the effective cell locomotion rate and not to the movements of any intracellular layer. Around the cells deprived of any attachment to the substratum, which cannot locomote but manifest vigorous intracellular movements, the anterograde flow ceases at least along 2/3 of their lenght. It persists, however, around the frontal fountain zone, where other particles still move backwards together with the retracted ectoplasmic layer. This indicates that the role of the forward flow of and on the cell surface is to compensate for: (1) the increase of the surface area in the frontal regions due to locomotion, (2) the withdrawal of a part of material which is hauled back by the retracting cortical layer. A comprehensive scheme of the velocity distribution within the different layers of a moving amoeba and around it has been constructed on the basis of present and earlier data.Study supported by the Research Project CPBP 04.01 of the Polish Academy of Science.I dedicate this paper to Professor K. E. Wohlfarth-Bottermann with the best wishes for his 65th birthday.  相似文献   

20.
IFT46是纤毛内运输蛋白IFT复合物B(IFT-B)的一个重要组分,对于纤毛的组装、运动和感知发挥着重要作用。为深入研究IFT46的作用机制,利用ift46基因全序列分别构建了带有GST和MBP标签的原核表达载体p GEX-2T-ift46和p MAL-C2X-ift46,并转入大肠杆菌BL21(DE3)诱导表达,以15%SDS-PAGE鉴定,分别获得了分子量为70、86 k Da的重组GST/MBP-IFT46融合蛋白。将亲和纯化的GST-IFT46融合蛋白(纯度95%以上)免疫新西兰大白兔,采集第5次免疫后血清用ELISA测定效价为1∶256 000。抗血清依次经Protein A和固定在MBP-IFT46纯化后,用Western blotting和免疫荧光检测抗体特异性,结果表明制备的多克隆抗体能很好地识别莱茵衣藻中的IFT46,而且发现IFT46绝大部分定位在纤毛基体,极少部分沿纤毛呈点状分布,为继续开展IFT46在肥胖症、糖尿病、多囊肾病等纤毛相关疾病中作用机制的研究奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号