首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Auger  H C Jarrell  I C Smith 《Biochemistry》1988,27(13):4660-4667
The interactions of the local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. The lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed [Boulanger, Y., Schreier, S., & Smith, I. C. P. (1981) Biochemistry 20, 6824-6830] that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic.  相似文献   

2.
High-pressure Fourier transform infrared (FT-IR) spectroscopy was used to study the effects of a local anesthetic, tetracaine, on the structural and dynamic properties of lipids in model membranes. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) in the absence and presence of a physiological concentration of cholesterol (30 mol %). The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results indicate that the effects of tetracaine on the structure of pure DMPC bilayers in the gel state are dependent on the state of charge of the anesthetic. The uncharged tetracaine disorders the lipid acyl chains while the charged form induces the formation of an interdigitated gel phase. The presence of cholesterol in the latter system prevents the formation of the interdigitated phase, whereas in the former system it disorders the lipid acyl chains in the gel state. Moreover, it is shown that the addition of uncharged tetracaine to interdigitated DHPC bilayers does not alter the interdigitated state of the hydrocarbon chains.  相似文献   

3.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

4.
The interaction of the local anesthetic tetracaine with phosphatidylserine-containing model membranes has been studied by 2H-NMR. Charged tetracaine exhibited an unusually large partition coefficient into multilamellar dispersions of phosphatidylserine. The 2H-NMR spectra consisted of a Pake doublet and a narrow line, with the former corresponding to tetracaine in the bilayer and the latter to tetracaine free in solution. A strong pH dependence of the quadrupole splittings indicated different membrane locations for charged and uncharged tetracaine. In equimolar mixtures of phosphatidylserine and phosphatidylcholine the partition coefficients and 2H-NMR spectra were much more like those observed in neat phosphatidylcholine than in neat phosphatidylserine. Dilution studies at pH 5.5 indicated that in phosphatidylserine/phosphatidylcholine mixtures tetracaine experiences a three-site exchange similar to that found earlier for tetracaine in phosphatidylcholine. Tetracaine is in fast exchange between sites weakly bound to membrane and free in solution, and in slow exchange with a strongly bound site in the membrane.  相似文献   

5.
Unilamellar dioleoylphosphatidylcholine (DOPC) liposomes (250 microM) incorporated 2 mol% of [3H]pristane at 37 degrees C after addition of 50 microM pristane solubilized with beta-cyclodextrin. Conventional solubilization in dimethyl sulphoxide resulted in much lower uptake. Premixing of perdeuterated pristane with DOPC and dipalmitoylphosphatidylcholine (DPPC) prior to the formation of multilamellar liposomes resulted in homogeneous incorporation of up to 5 mol% pristane at 22 degrees C and 50 degrees C, respectively, as observed by 2H-NMR. Lipid order parameters measured by 31P and 2H-NMR remained unchanged after pristane uptake. Pristane induced the transformation of part of the dioleoylphosphatidylethanolamine (DOPE)/DOPC (3:1, mol/mol) liquid crystalline lamellar phase into an inverse hexagonal phase. 5 mol% pristane in DPPC bilayers decreased the midpoint of the main phase transition temperature of DPPC from 41.5 degrees C to 40.9 degrees C. Upon cooling in the temperature range from 41 degrees C to 36 degrees C, pristane was either displaced from the DPPC bilayer or the mode of incorporation changed. These results may aid in defining the mechanisms whereby pristane, an isoprenoid C19-isoalkane, induces plasmacytomagenesis in mice.  相似文献   

6.
The head-group orientations and molecular dynamics of three glyceroglycolipids in aqueous dispersions, as determined by 2H-NMR, are compared. 1,2-Di-O-tetradecyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerol (alpha-DTGL) and 1,2-di-O-tetradecyl-3-O-(alpha-D-mannopyranosyl)-sn-glycerol (alpha-DTML), selectively 2H-labelled on the pyranose ring, at the exocyclic hydroxymethyl group, and at C3 of glycerol, have been studied by 2H-NMR and the results compared with those reported earlier for 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL). The alpha-glucolipid exhibits a gel-to-liquid crystal phase transition and a lamellar to hexagonal mesophase transition at temperatures which are similar to those of the beta-anomer, beta-DTGL. However, alpha-DTGL exhibits head group orientations and molecular ordering in the lamellar and hexagonal phases which differ strikingly with those reported for the corresponding beta-glucolipid. Whereas the head group of beta-DTGL is extended away from the bilayer surface into the aqueous phase, that of alpha-DTGL is almost parallel to the bilayer surface. alpha-DTGL exhibits a molecular order parameter of 0.56 which is substantially greater than that of its anomer, beta-DTGL, 0.45. The latter indicates that the head group region of the alpha-glyceroglucolipid is characterized by smaller angular fluctuations than that of beta-DTGL. On entering the hexagonal mesophase the pyranose ring of the beta-glucolipid undergoes a large reorientation relative to the motional axis of the head group, whereas the alpha-anomer exhibits only a small orientational change. 1,2-Di-O-tetradecyl-3-O-(alpha-D-mannopyranosyl)-sn-glycerol (alpha-DTML) undergoes a phase transition at 47 degrees C, attributed to the unusual lamellar gel to hexagonal phase transition. The pyranose ring of alpha-DTML, in a mixture with dimyristoylphosphatidylcholine (1:9 mol ratio) to give a lamellar liquid crystalline phase, is oriented away from the bilayer surface into the aqueous environment and has an Smol of 0.75. The results for alpha-DTML, 2H-labelled at the C3 position of glycerol, suggest that this segment also has high molecular ordering. alpha-DTML in a lamellar environment has the least flexible membrane surface of the glyceroglycolipids investigated to date. 2H-NMR spin lattice relaxation times have been used to probe the head group motions of the glycolipids. The results indicate that the rate of head group motion increases in the order alpha-DTML less than alpha-DTGL less than beta-DTGL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Amyloid β-peptide (Aβ) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Aβ with lipid bilayers by multinuclear NMR using 31P nuclei. We found that Aβ (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Aβ (1-40), as viewed from 31P NMR. The difference of the isotropic peak intensity between DMPC/Aβ and DMPC/GM1/Aβ suggests a specific interaction between Aβ and GM1. We show that in the DMPC/GM1/Aβ system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Aβ peptide, and facilitated by GM1.  相似文献   

8.
The passive leakage of glucose across bilayers of dimyristoylphosphatidylcholine (DMPC), cholesterol (variable), and dicetyl phosphate (constant 5.9 mol%) has been measured as efflux over 30 min from multilamellar vesicles. Bilayer cholesterol was varied from 20 mol% to 40 mol%. Glucose permeation rates were measured from 10 degrees C to 36 degrees C, and showed a maximum in permeability at 24 degrees C, the DMPC phase transition temperature. Increasing the bilayer cholesterol content above 20 mol% reduced that permeability peak. These results are quite consistent with a large number of similar bilayer permeability studies over the past 25 years. However, they are not consistent with a previous study of these same systems, which reported increased glucose permeability with temperature, without any maximum at or near the lipid chain melting temperature (K. Inoue, Biochim. Biophys. Acta 339 (1974) 390-402).  相似文献   

9.
Two-dimensional solid-state 2H NMR spectroscopy of specifically deuteriated lipids is used to detect and to characterize the rate and mode of slow motions in two lipid bilayer systems. Lateral diffusion of lipid molecules over the curved surface of dipalmitoylphosphatidylcholine liposomes can be detected by two-dimensional exchange 2H NMR and it is shown that molecular orientational exchange is complete on the timescale of 100 ms. In contrast, it is shown that for the glycolipid 1,2-di-O-tetradecyl-3-O-Beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL), there is no evidence of a corresponding orientational exchange in the liquid-crystalline phase suggesting that this lipid forms relatively flat bilayers. In the gel phase of hydrated multibilayers of beta-DTGL, a slow (10(3) s(-1)) whole molecule axial motion is demonstrated at 40 degrees C. Comparison of the experimental and simulated 2D-NMR ridge patterns suggests that large angle jumps about the long molecular axis, rather than small step Brownian diffusion, can best account for the 2D-exchange spectra of beta-DTGL in the gel phase. The significance of this technique for the study of dynamics in other biological systems is discussed.  相似文献   

10.
The lateral distribution of cholesterol in the plane of lipid multibilayers   总被引:1,自引:0,他引:1  
We consider three models of cholesterol distribution in the plane of a bilayer of DMPC. We analyse recent 2H-NMR data obtained from deuterated fluorescent probes and show that, on the characteristic time-scale of 2H-NMR, it is in accord with a random distribution of cholesterol in a fluid-like DMPC bilayer in a single phase at least for T greater than or approximately equal to 35 degrees C and for 0 less than or equal to c less than or equal to 0.42.  相似文献   

11.
E C Kelusky  I C Smith 《Biochemistry》1983,22(25):6011-6017
The interaction of the local anesthetics tetracaine and procaine with multilamellar dispersions of phosphatidylethanolamine has been investigated by using 2H NMR of specifically deuterated anesthetics. Tetracaine was found to partition more strongly than procaine into the lipid. The 2H NMR spectra showed a quadrupole doublet and a narrow line, with the former corresponding to membrane-bound anesthetic and the latter to anesthetic free in solution. The integrated areas of the narrow line and of the doublet correspond to the concentrations of free and bound anesthetic predicted from the Kp values. There is no strong pH dependence for the quadrupole splittings of tetracaine, suggesting a similar depth of penetration into the lipid bilayer over the entire pH range. The data are consistent with a model in which tetracaine acts as a wedge to stabilize the phosphatidylethanolamine bilayer against transition to a hexagonal structure. Procaine is proposed to sit higher in the phosphatidylethanolamine bilayer than does tetracaine. The T1 values were generally shorter in the membrane than in solution, suggesting slower motions, particularly for the aromatic ring of tetracaine.  相似文献   

12.
Fluorescence quenching and resonance energy transfer have been used to determine the localization of the local anesthetic tetracaine in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) as a function of both temperature and ionic strength. The fluorescence behaviour of tetracaine in vesicles can be attributed to its different partition coefficients in acid and basic solution, in gel phase and fluid phase vesicles, respectively. Using both steady-state and time-resolved fluorescence measurements we show that a saturable binding rather than a partitioning model holds for the interaction of tetracaine with gel phase bilayers. The relative quenching efficiencies of the series of n-AS dyes depend on the phase state of the bilayer and suggest a deeper incorporation of tetracaine in fluid phase than in gel phase membranes. Resonance energy transfer measurements support the view that tetracaine is incorporated predominantly in the region of the 9-AS chromophore in DMPC-bilayers.  相似文献   

13.
The structure and thermotropic phase behaviour of a fully hydrated binary mixture of dipalmitoylphosphatidylcholine and a branched-chain phosphatidylcholine, 1, 2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine, were examined using differential scanning calorimetry, synchrotron X-ray diffraction and freeze-fracture electron microscopy. The branched-chain lipid forms a nonlamellar phase when dispersed alone in aqueous medium. Mixed aqueous dispersions of the two phospholipids containing less than 33 mol% of the branched-chain lipid form lamellar phases over the whole temperature range were studied (4 degrees C to 60 degrees C). When present in proportions greater than 33 mol% it induces a hexagonal phase in mixed aqueous dispersions with dipalmitoylphosphatidylcholine at temperatures above the fluid phase transition. At temperatures below 35 degrees C a hexagonal phase coexists with a gel bilayer phase. The lamellar<-->nonlamellar transition can be explained satisfactorily on the basis of the shape of the molecule expressed in terms of headgroup and chain cross-sectional areas. At temperatures below 35 degrees C macroscopic phase separation of two gel phases takes place. Freeze-fracture electron microscopy revealed that one gel phase consists of bilayers with a highly regular, periodic superstructure (macro-ripples) whereas the other phase forms flat, planar bilayers. The macro-ripple phase appears to represent a relaxation structure required to adapt to the packing constraints imposed by the incorporation of the branched-chain lipid into the dipalmitoylphosphatidylcholine host bilayer. The data suggest that structural changes that take place on cooling the mixed dispersion below the lamellar<-->nonlamellar phase transition temperature cannot be adequately described using the molecular form concept. Instead it is necessary to take into account the detailed molecular form of the guest lipid as well as its physical properties.  相似文献   

14.
The membrane-buffer partition coefficient of tetracaine was measured by direct ultraviolet spectrophotometry in dimyristoylphosphatidylcholine unilamellar liposomes at temperatures above and below the main phase transition. The partition coefficients of uncharged tetracaine to solid-gel (18 degrees C) and liquid-crystal (30 degrees C) membranes were 6.9 x 10(4) and 1.2 x 10(5), respectively. Despite the general assumption that local anesthetic binding to the solid membrane is negligible, this study showed that the solid membrane binding amounts to 57.5% of the liquid membrane binding. Binding of the charged form to the liquid or solid membrane was not detectable under the present experimental condition of 0.03 mM tetracaine bulk concentration. The present method measures metachromasia of local anesthetics when bound to lipid membranes. Its advantage is that the separation of the vesicles from the solution is not required. A linearized equation is presented that estimates the partition coefficient or binding constant graphically from a linear plot of the absorbance data. The method is applicable for estimation of drug partition when a measurable spectral change occurs due to complex formation.  相似文献   

15.
Interaction of amphotericin B with membrane lipids as viewed by 2H-NMR   总被引:2,自引:0,他引:2  
The effects of amphotericin B upon the organization and dynamics of multibilayer membranes of dimyristoylphosphatidylcholine (DMPC) were investigated by means of 2H-NMR. At high amphotericin B concentrations (30 mol% with respect to the lipid) and at temperatures above 25 degrees C, DMPC experiences two different environments which are in slow exchange on the 2H-NMR time scale. In one of these, the lipid is immobilized by the antibiotic, in a molar ratio of approximately 1:1, whereas the lipid unsequestered by amphotericin B is more ordered than in its pure state. This ordering effect is perceived at relatively low antibiotic doses (4%). The local lipid order, and the relative percentage, of sequestered DMPC, are temperature-independent (up to 65 degrees C), whereas the ordering of the unsequestered lipid domain is not. The perturbation induced by amphotericin B is manifest similarly at the edges as well as in the center of the bilayer. Antibiotic addition leads to large decreases in the transverse relaxation time, T2, of the labelled lipid, but not in the spin-lattice relaxation time, T1. This indicates an increased density of slow motional modes and little change in rapid motions.  相似文献   

16.
The association of ethanol with unilamellar dimyristoyl phosphatidylcholine (DMPC) liposomes of varying cholesterol content has been investigated by isothermal titration calorimetry over a wide temperature range (8-45 degrees C). The calorimetric data show that the interaction of ethanol with the lipid membranes is endothermic and strongly dependent on the phase behavior of the mixed lipid bilayer, specifically whether the lipid bilayer is in the solid ordered (so), liquid disordered (ld), or liquid ordered (lo) phase. In the low concentration regime (<10 mol%), cholesterol enhances the affinity of ethanol for the lipid bilayer compared to pure DMPC bilayers, whereas higher levels of cholesterol (>10 mol%) reduce affinity of ethanol for the lipid bilayer. Moreover, the experimental data reveal that the affinity of ethanol for the DMPC bilayers containing small amounts of cholesterol is enhanced in the region around the main phase transition. The results suggest the existence of a close relationship between the physical structure of the lipid bilayer and the association of ethanol with the bilayer. In particular, the existence of dynamically coexisting domains of gel and fluid lipids in the transition temperature region may play an important role for association of ethanol with the lipid bilayers. Finally, the relation between cholesterol content and the affinity of ethanol for the lipid bilayer provides some support for the in vivo observation that cholesterol acts as a natural antagonist against alcohol intoxication.  相似文献   

17.
The influence of Gramicidin D (GD) incorporation on the structure and phase behavior of aqueous dispersions of DMPC lipid bilayers has been studied using small-angle x-ray scattering (SAXS) and (2)H-NMR spectroscopy. The experiments covered a temperature range from -10 degrees C to 60 degrees C and a pressure range of 0.001-4 kbar. Pressure was used to be able to tune the lipid bilayer conformational order and phase state and because high pressure is an important feature of certain natural biotopes. The data show that, depending on the GD concentration, the structure of the temperature- and pressure-dependent lipid phases is significantly altered by the insertion of the polypeptide, and a p,T-phase diagram could be obtained for intermediate GD concentrations. Upon gramicidin insertion, a rather narrow fluid-gel coexistence regions is formed. Two gel phases are induced which are different from those of the pure lipid bilayer system and which separate at low temperatures/high pressures. For both the temperature- and pressure-induced fluid-to-gel transition, a similar pseudocritical transitional behavior is observed, which is even more pronounced upon incorporation of the peptide.  相似文献   

18.
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27–30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.  相似文献   

19.
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as an aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27-30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.  相似文献   

20.
Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号