首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometries and interaction energies of unusual UU and AA base pairs with one standard hydrogen bond (H-bond) and additional C-H...O or C-H...N contacts have been determined by quantum-chemical methods taking into account electron correlation. Whereas the C-H bond length in the UU C-H...O contact increases upon complex formation (H-bond pattern), the C-H bond of the AA C-H....N interaction is shortened (anti-H-bond pattern). The same properties are found for model complexes between U or A and formaldehyde that have intermolecular C-H...acceptor contacts but no standard H-bonds. Both the C-H...acceptor H-bond and anti-H-bond interactions are attractive. A possible influence of the donor CH group charge distribution on the interaction pattern is discussed.  相似文献   

2.
The role of classical hydrogen bonds in the structural stability of biological macro-molecules is well understood. In the present study, we explore the influence of C-H...O interactions in relation to other environmental preferences in interleukins. Main chain-main chain interactions are predominant. Pro residues might stabilize helices and strands by C-H...O H-bonds in interleukins. Majority of the C-H...O interacting residues were solvent exposed. 62% of C-H...O interactions was long-range interactions. The results presented in this study might be useful for structural stability studies in interleukins.  相似文献   

3.
Sarkhel S  Desiraju GR 《Proteins》2004,54(2):247-259
The characteristics of N-H...O, O-H...O, and C-H...O hydrogen bonds are examined in a group of 28 high-resolution crystal structures of protein-ligand complexes from the Protein Data Bank and compared with interactions found in small-molecule crystal structures from the Cambridge Structural Database. It is found that both strong and weak hydrogen bonds are involved in ligand binding. Because of the prevalence of multifurcation, the restrictive geometrical criteria set up for hydrogen bonds in small-molecule crystal structures may need to be relaxed in macromolecular structures. For example, there are definite deviations from linearity for the hydrogen bonds in protein-ligand complexes. The formation of C-H...O hydrogen bonds is influenced by the activation of the C(alpha)-H atoms and by the flexibility of the side-chain atoms. In contrast to small-molecule structures, anticooperative geometries are common in the macromolecular structures studied here, and there is a gradual lengthening as the extent of furcation increases. C-H...O bonds formed by Gly, Phe, and Tyr residues are noteworthy. The numbers of hydrogen bond donors and acceptors agree with Lipinski's "rule of five" that predicts drug-like properties. Hydrogen bonds formed by water are also seen to be relevant in ligand binding. Ligand C-H...O(w) interactions are abundant when compared to N-H...O(w) and O-H...O(w). This suggests that ligands prefer to use their stronger hydrogen bond capabilities for use with the protein residues, leaving the weaker interactions to bind with water. In summary, the interplay between strong and weak interactions in ligand binding possibly leads to a satisfactory enthalpy-entropy balance. The implications of these results to crystallographic refinement and molecular dynamics software are discussed.  相似文献   

4.
Sequence-specific protein-nucleic acid recognition is determined, in part, by hydrogen bonding interactions between amino acid side-chains and nucleotide bases. To examine the repertoire of possible interactions, we have calculated geometrically plausible arrangements in which amino acids hydrogen bond to unpaired bases, such as those found in RNA bulges and loops, or to the 53 possible RNA base-pairs. We find 32 possible interactions that involve two or more hydrogen bonds to the six unpaired bases (including protonated A and C), 17 of which have been observed. We find 186 "spanning" interactions to base-pairs in which the amino acid hydrogen bonds to both bases, in principle allowing particular base-pairs to be selectively targeted, and nine of these have been observed. Four calculated interactions span the Watson-Crick pairs and 15 span the G:U wobble pair, including two interesting arrangements with three hydrogen bonds to the Arg guanidinum group that have not yet been observed. The inherent donor-acceptor arrangements of the bases support many possible interactions to Asn (or Gln) and Ser (or Thr or Tyr), few interactions to Asp (or Glu) even though several already have been observed, and interactions to U (or T) only if the base is in an unpaired context, as also observed in several cases. This study highlights how complementary arrangements of donors and acceptors can contribute to base-specific recognition of RNA, predicts interactions not yet observed, and provides tools to analyze proposed contacts or design novel interactions.  相似文献   

5.
Hydrogen bonds between polarized atoms play a crucial role in protein interactions and are often used in drug design, which usually neglects the potential of C-H...O hydrogen bonds. The 1.4 A resolution crystal structure of the ligand binding domain of the retinoic acid receptor RARgamma complexed with the retinoid SR11254 reveals several types of C-H...O hydrogen bonds. A striking example is the hydroxyl group of the ligand that acts as an H bond donor and acceptor, leading to a synergy between classical and C-H...O hydrogen bonds. This interaction introduces both specificity and affinity within the hydrophobic ligand pocket. The similarity of intraprotein and protein-ligand C-H...O interactions suggests that such bonds should be considered in rational drug design approaches.  相似文献   

6.
The X-ray structures of cocrystals between 2,2'-dipyridyl-N,N'-dioxide (1) with fumaric acid (2), itaconic acid (3), succinic acid (4), and oxalic acid (5) were solved to determine if concurrent CH...O interactions were capable of orienting the bimolecular association of the two molecules. Cocrystals 1.2, 1.3 and 1.4 produce cyclic hydrogen bonded motifs employing pair-wise OH...O and CH...O hydrogen bonds, whereas cocrystal 1.5 forms analogous OH...O hydrogen bonds with a different set of intermolecular CH...O hydrogen bonds. Evidence of cocrystal formation was also observed for these complexes by differential scanning calorimetry and FT-IR spectroscopy. The structures of 1.2, 1.3 and 1.4 demonstrate the potential of the pair-wise OH...O and CH...O hydrogen bonding interactions and serve to illustrate their use as hydrogen bonding isosteres in crystal engineering, molecular recognition, and drug design.  相似文献   

7.
It is shown that the recently developed quantitative J(NN)HNN-COSY experiment can be used for the direct identification of hydrogen bonds in non-canonical base pairs in RNA. Scalar(2h)J(NN)couplings across NH.N hydrogen bonds are observed in imino hydrogen bonded GA base pairs of the hpGA RNA molecule, which contains a tandem GA mismatch, and in the reverse Hoogsteen AU base pairs of the E-loop of Escherichia coli 5S rRNA. These scalar couplings correlate the imino donor(15)N nucleus of guanine or uridine with the acceptor N1 or N7 nucleus of adenine. The values of the corresponding(2h)J(NN)coupling constants are similar in size to those observed in Watson-Crick base pairs. The reverse Hoogsteen base pairs could be directly detected for the E-loop of E.coli 5S rRNA both in the free form and in a complex with the ribosomal protein L25. This supports the notion that the E-loop is a pre-folded RNA recognition site that is not subject to significant induced conformational changes. Since Watson-Crick GC and AU base pairs are also readily detected the HNN-COSY experiment provides a useful and sensitive tool for the rapid identification of RNA secondary structure elements.  相似文献   

8.
Conformation of two-stranded DNA in H2O–methanol, H2O–ethanol, H2O–isopropanol, and H2O–dioxane solutions at different concentrations of alkaline ions has been studied with the aid of circular dichroism. The following conclusions are drawn: The conformation of DNA in H2O and H2O–methanol belongs to a family of B forms (B, C, T forms are the representatives of the family). The magnitude of the winding angle between adjacent base pairs (θ) is determined by the concentration and type of the cations. In H2O the cation action is nonspecific and leads to an increase in θ value. In 80% methanol the ions act specifically, Cs+ being to stabilize a form with a greater θ value, and Li+ being with a lesser one. The total θ change is likely within the limits of 33° ? θ ? 45°. At high content of ethanol, isopropanol, or dioxane (~80%), but not with methanol, and in low ionic strength the conformation of DNA belongs to a family of A forms (A form is one of the members of the family) and is specified by the concentration and type of cation involved. The two-stranded regions of RNA in H2O are also of A type and winds with the rise of cation concentration. The range of θ variation is not narrower than 30° ? θ 33°. The conformational transitions within the families (induced by ions) are of non-cooperative pattern, wheras the transitions between the families (induced by nonpolar component) are of cooperative pattern. The effect of cations, when specific, is discussed on the basis of steric correspondence between the width of DNA narrow groove and the size of a hydrated cation.  相似文献   

9.
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H. O hydrogen bond between Ala(4) C(alpha)H and (D)Leu(9) CO. The parameters for C-H. O interaction are Ala(4) C(alpha)H. O=C (D)Leu(9) distance 3.27 A, C(alpha)-H. O angle 176 degrees, and O. H(alpha) distance 2.29 A. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner.  相似文献   

10.
Hardman SJ  Thompson KC 《Biochemistry》2006,45(30):9145-9155
Fluorescent nucleobase analogues are used extensively to probe the structure and dynamics of nucleic acids. The fluorescence of the adenine analogue 2-aminopurine and the cytosine analogue pyrrolocytosine is significantly quenched when the bases are located in regions of double-stranded nucleic acids. To allow more detailed structural information to be obtained from fluorescence studies using these bases, we have studied the excited-state properties of the bases at the CIS and TDB3LYP level in hydrogen-bonded and base-stacked complexes. The results reveal that the first excited state (the fluorescent state) of a hydrogen-bonded complex containing 2-aminopurine and thymine is just the first excited state of 2-aminopurine alone. However, the same cannot be said for structures in which 2-aminopurine is base stacked with other nucleobases. Stacking causes the molecular orbitals involved in the fluorescence transition to spread over more than one base. The predicted rate for the fluorescence transition is reduced, thus reducing the fluorescence quantum yield. The decrease in radiative rate varies with the stacking arrangement (e.g., A- or B-form DNA) and with the identity of the nucleobase with which 2-aminopurine is stacked. Stacking 2-aminopurine between two guanine moieties is shown to significantly decrease the energy gap between the first and second excited states. We do not find reliable evidence for a low-energy charge-transfer state in any of the systems that were studied. In the case of pyrrolocytosine, base stacking was found to reduce the oscillator strength for the fluorescence transition, but very little spreading of molecular orbitals across more than one base was observed.  相似文献   

11.
S Krimm  K Kuroiwa 《Biopolymers》1968,6(3):401-407
Infrared spectra of polyglycines I and II obtained at ?170°C. have been compared with those obtained at room temperature. The changes in frequency of some of the C—H stretching bands are consistent with the earlier suggestion that C—H …? O?C hydrogen bonds are present in the structure of polyglycine II.  相似文献   

12.
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760).  相似文献   

13.
Determination of nucleic acid base ratios by gas-liquid chromatography   总被引:1,自引:0,他引:1  
  相似文献   

14.
The formation of hydrogen bonded complexes between nucleic acid bases and acetamide has been studied by nuclear magnetic resonance in CDC13 at different temperatures. Pairs of hydrogen bonds are formed when acetamide binds to nucleic acid bases. Thermodynamic parameters have been computed and compared to those obtained for the association of carboxylic acids with nucleic acid bases. The role of hydrogen bonded complexes in the association of proteins with nucleic acids is discussed.  相似文献   

15.
Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.  相似文献   

16.
The state of phosphorylation in neurofilament (NF) proteins is studied by the 31P NMR technique. The 31P NMR spectrum of intact NF proteins at pH 7.0 is comprised of a major resonance at 4.18 ppm and a minor resonance at 3.53 ppm. The chemical shifts of the major and minor resonances are strongly dependent on pH and have pKa values for phosphoserine of 5.85 and for phosphothreonine of 6.00, respectively. 31P NMR spectra of isolated NF polypeptides show nonequivalent phosphoserine clusters in NF150 and in NF200. Their chemical shifts are very similar in both polypeptides, but the intensities of homologous resonances are different. NF68 has no detectable 31P resonance signal. Phosphate-specific monoclonal antibodies to NF200 can distinguish phosphates of various clusters. Microtubule proteins can also produce specific alteration of the 31P resonances of NF200. NF proteins digested by calcium-activated neutral protease (CANP) show relatively little change in 31P resonances.  相似文献   

17.
Of several methanogenic bacteria examined only Methanococcus voltae readily incorporated exogenous amino acids into cell protein. This was easily shown, since growth in the presence of exogenous amino acids resulted in a loss of signal intensities from those carbon atoms normally labelled by [13C]acetate during biosynthesis. From 80% to 95% of the Ser, Lys, Pro or Val incorporated into protein could be supplied directly from the growth medium. In contrast, Asp and Glu, if supplied to the medium, accounted for only a small percentage of the total acidic amino acid used in protein synthesis. Constitutive transport systems took up a wide range of amino acids at rates of 0.1-4.1 nmol min-1 mg-1. The transport systems required Na+, with the possible exception of the basic amino acid lysine, and were inhibited by N-ethylmaleimide or 3,3',4',5-tetrachlorosalicylanilide. No interconversion of Ile to other amino acids was detected when cells were given [13C]Ile during growth, whereas the expected labelling of the Asp and Glu families of amino acids resulted when [13C]Asp was provided to the culture. Mc. voltae synthesized its amino acids from acetate via routes fully consistent with those found in Methanospirillum hungatei [Ekiel, I., Smith, I.C.P. & Sprott, G.D. (1983) J. Bacteriol. 156, 316-326]. Propionate could substitute for an auxotrophic requirement for Ile, resulting in the synthesis of Ile with the beta-carbon originating from the carboxyl of acetate and the alpha-carbon from the carboxyl of propionate. No labelling of Ile from [13C]acetate could occur without the fatty acid. These results provide strong evidence for the carboxylation of propionate to form 2-oxobutyrate as intermediate in Ile biosynthesis, and show that the metabolic defect in Ile biosynthesis occurs prior to 2-oxobutyrate synthesis. The presence of constitutive amino acid transport systems and multiple routes for ile biosynthesis make Methanococcus voltae an attractive methanogen for genetic studies.  相似文献   

18.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

19.
A simple method for the detection of sequence- and structural-selective ligand binding to nucleic acids is described. The method is based on the commonly used thermal denaturation method in which ligand binding is registered as an elevation in the nucleic acid melting temperature (Tm). The method can be extended to yield a new, higher -throughput, assay by the simple expediency of melting designed mixtures of polynucleotides (or oligonucleotides) with different sequences or structures of interest. Upon addition of ligand to such mixtures at low molar ratios, the Tm is shifted only for the nucleic acid containing the preferred sequence or structure. Proof of principle of the assay is provided using first a mixture of polynucleotides with different sequences and, second, with a mixture containing DNA, RNA and two types of DNA:RNA hybrid structures. Netropsin, ethidium, daunorubicin and actinomycin, ligands with known sequence preferences, were used to illustrate the method. The applicability of the approach to oligonucleotide systems is illustrated by the use of simple ternary and binary mixtures of defined sequence deoxyoligonucleotides challenged by the bisanthracycline WP631. The simple mixtures described here provide proof of principle of the assay and pave the way for the development of more sophisticated mixtures for rapidly screening the selectivity of new nucleic acid binding compounds.  相似文献   

20.
We have incorporated 5-fluorouridine into several sites within a 19-mer RNA modelled on the translational operator of the MS2 bacteriophage. The 19F NMR spectra demonstrate the different chemical shifts of helical and loop fluorouridines of the hairpin secondary structure. Addition of salt gives rise to a species in which the loop fluorouridine gains the chemical shift of its helical counterparts, due to the formation of the alternative bi-molecular duplex form. This is supported by UV thermal melting behaviour which becomes highly dependent on the RNA concentration. Distinct 19F NMR signals for duplex and hairpin forms allow the duplex-hairpin equilibrium constant to be determined under a range of conditions, enabling thermodynamic characterisation and its salt dependence to be determined. Mg2+ also promotes duplex formation, but more strongly than Na+, such that at 25 degrees C, 10 mM MgCl2 has a comparable duplex-promoting effect to 300 mM NaCl. A similar effect is observed with Sr2+, but not Ca2+ or Ba2+. Additional hairpin species are observed in the presence of Na+ as well as Mg2+, Ca2+, Sr2+ and Ba2+ ions. The overall, ensemble average, hairpin conformation is therefore salt-dependent. Electrostatic considerations are thus involved in the balance between different hairpin conformers as well as the duplex-hairpin equilibrium. The data presented here demonstrate that 19F NMR is a powerful tool for the study of conformational heterogeneity in RNA, which is particularly important for probing the effects of metal ions on RNA structure. The thermodynamic characterisation of duplex-hairpin equilibria will also be valuable in the development of theoretical models of nucleic acid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号