共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP (cAMP)-dependent protein kinase (PKA) was the second protein kinase to be identified, and the PKA catalytic (C)-subunit serves as a prototype for the large protein kinase superfamily that contains over 500 gene products. The protein kinases regulate many biological functions in eukaryotic cells and are now also a major therapeutic target. The discovery of PKA nearly 50 years ago was quickly followed by the identification of the regulatory subunits that bind cAMP and release the catalytic activity from the holoenzyme. Thus in PKA we see the convergence of two major signaling mechanisms—protein phosphorylation and second messenger signaling through cAMP. Crystallography provides a foundation for understanding function, and detailed knowledge of the structure of the isolated regulatory (R)- and catalytic (C)-subunits has been extremely informative. Yet it is the R2C2 holoenzyme that predominates in cells, and the allosteric features of PKA signaling can only be fully appreciated by seeing the full-length protein. The symmetry and the quaternary constraints that one R:C heterodimer exerts on the other in the holoenzyme simply are not present in the isolated subunits or even in the R:C heterodimer. 相似文献
2.
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. 相似文献
3.
PKC、PKA和TPK在血小板激活中的作用 总被引:1,自引:0,他引:1
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。 相似文献
4.
Davies TG Verdonk ML Graham B Saalau-Bethell S Hamlett CC McHardy T Collins I Garrett MD Workman P Woodhead SJ Jhoti H Barford D 《Journal of molecular biology》2007,367(3):882-894
Although the crystal structure of the anti-cancer target protein kinase B (PKBbeta/Akt-2) has been useful in guiding inhibitor design, the closely related kinase PKA has generally been used as a structural mimic due to its facile crystallization with a range of ligands. The use of PKB-inhibitor crystallography would bring important benefits, including a more rigorous understanding of factors dictating PKA/PKB selectivity, and the opportunity to validate the utility of PKA-based surrogates. We present a "back-soaking" method for obtaining PKBbeta-ligand crystal structures, and provide a structural comparison of inhibitor binding to PKB, PKA, and PKA-PKB chimera. One inhibitor presented here exhibits no PKB/PKA selectivity, and the compound adopts a similar binding mode in all three systems. By contrast, the PKB-selective inhibitor A-443654 adopts a conformation in PKB and PKA-PKB that differs from that with PKA. We provide a structural explanation for this difference, and highlight the ability of PKA-PKB to mimic the true PKB binding mode in this case. 相似文献
5.
L Gangoda M Doerflinger Y Y Lee A Rahimi N Etemadi D Chau L Milla L O'Connor H Puthalakath 《Cell death & disease》2012,3(8):e365
Use of the cre transgene in in vivo mouse models to delete a specific ‘floxed'' allele is a well-accepted method for studying the effects of spatially or temporarily regulated genes. During the course of our investigation into the effect of cyclic adenosine 3′,5′-monophosphate-dependent protein kinase A (PKA) expression on cell death, we found that cre expression either in cultured cell lines or in transgenic mice results in global changes in PKA target phosphorylation. This consequently alters gene expression profile and changes in cytokine secretion such as IL-6. These effects are dependent on its recombinase activity and can be attributed to the upregulation of specific inhibitors of PKA (PKI). These results may explain the cytotoxicity often associated with cre expression in many transgenic animals and may also explain many of the phenotypes observed in the context of Cre-mediated gene deletion. Our results may therefore influence the interpretation of data generated using the conventional cre transgenic system. 相似文献
6.
Choudhary S Kumar A Kale RK Raisz LG Pilbeam CC 《Biochemical and biophysical research communications》2004,322(2):395-402
We have shown that extracellular calcium [Ca(+2)](e) induces cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production via an ERK signaling pathway in osteoblasts. In this study, we examined the roles of protein kinase C (PKC) and A (PKA) signaling pathways in the [Ca(+2)](e) induction of COX-2 in primary calvarial osteoblasts from mice transgenic for -371 bp of the COX-2 promoter fused to a luciferase reporter. Neither PKC specific inhibitors nor downregulation of the PKC pathway by phorbol myristate acetate (PMA) affected the [Ca(+2)](e) stimulation of COX-2 mRNA or promoter activity. In contrast, PKA inhibitors, used at doses that inhibited forskolin-stimulated luciferase activity by 90%, reduced [Ca(+2)](e)-stimulated COX-2 mRNA expression and promoter activity by 80-90%. [Ca(+2)](e) also stimulated a 2- to 3-fold increase in cAMP production. Hence, the [Ca(+2)](e) induction of COX-2 mRNA expression and promoter activity was independent of the PKC pathway and dependent on the PKA signaling pathway. 相似文献
7.
Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA. 相似文献
8.
Epac and PKA: a tale of two intracellular cAMP receptors 总被引:1,自引:0,他引:1
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function. 相似文献
9.
钙调素高表达对NRK细胞中DG-PKC和cAMP-PKA水平的影响 总被引:1,自引:0,他引:1
钙调素(CaM)作为Ca2+的主要受体,对细胞增殖起重要调节作用,而且在转化细胞中CaM的水平明显高于正常细胞.cAMP作为一种第二信使,起着将细胞外刺激信号转化为细胞内各种生理活动的媒介作用.蛋白激酶A(PKA)则是这种转化过程中的关键激酶.蛋白激... 相似文献
10.
《European journal of cell biology》2023,102(3):151336
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection in infants and young children globally and is responsible for hospitalization and mortality in the elderly population. Virus-induced airway epithelial barrier damage is a critical step during RSV infection, and emerging studies suggest that RSV disrupts the tight junctions (TJs) and adherens junctions (AJs) between epithelial cells, increasing the permeability of the airway epithelial barrier. The lack of commercially available vaccines and effective antiviral drugs for RSV emphasizes the need for new management strategies. Vitamin D3 is a promising intervention for viral infection due to its critical role in modulating innate immune responses. However, there is limited evidence on the effect of vitamin D3 on RSV pathogenies. Here, we investigated the impact of vitamin D3 on RSV-induced epithelial barrier dysfunction and the underlying mechanisms. We found that pre-incubation with 1,25(OH)2D3, the active form of vitamin D3, alleviated RSV-induced epithelial barrier disruption in a dose-dependent manner without affecting viability in 16HBE cells. 1,25(OH)2D3 induced minor changes in the protein expression level of TJ/AJ proteins in RSV-infected cells. We observed increased CREB phosphorylation at Ser133 during 1,25(OH)2D3 exposure, indicating that vitamin D3 triggered protein kinase A (PKA) activity in 16HBE. PKA inhibitors modified the restoration of barrier function by 1,25(OH)2D3 in RSV-infected cells, implying that PKA signaling is responsible for the protective effects of vitamin D3 against RSV-induced barrier dysfunction in airway epithelial cells. Our findings suggest vitamin D3 as a prophylactic intervention to protect the respiratory epithelium during RSV infections. 相似文献
11.
《Molecular membrane biology》2013,30(6):412-426
AbstractEquilibrative Nucleoside Transporters (SLC29) are a family of proteins that transport nucleosides, nucleobases and nucleoside analogue drugs across cellular membranes. ENT1 is expressed ubiquitously in mammalian tissues and responsible for a significant portion of nucleoside analog drug uptake in humans. Despite the important clinical role of ENT1, many aspects of the regulation of this protein remain unknown. A major outstanding question in this field is the whether ENT1 is phosphorylated directly. To answer this question, we overexpressed tagged human (h) and mouse (m) ENT1, affinity purified protein using the tag, conducted phosphoamino acid analysis and found that m/hENT1 is predominantly phosphorylated at serine residues. The large intracellular loop of ENT1, between transmembrane domains 6 and 7, has been suggested to be a site of regulation by phosphorylation, therefore we generated His/Ubiquitin tagged peptides of this region and used them for in vitro kinase assays to identify target serines. Our data support a role for PKA and PKC in the phosphorylation of ENT1 within the intracellular loop and show that PKA can phosphorylate multiple sites within this loop while PKC specifically targets serines 279 and 286 and threonine 274. These data demonstrate, for the first time, that ENT1 is a phosphoprotein that can be directly phosphorylated at several sites by more than one kinase. The presence of multiple kinase targets within the loop suggests that ENT1 phosphorylation is considerably more complex than previously thought and thus ENT1 may be subject to phosphorylation by multiple pathways. 相似文献
12.
Alexandr P. Kornev Susan S. Taylor 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(3):440-444
Protein kinases constitute a large protein family of important regulators in all eukaryotic cells. All of the protein kinases have a similar bilobal fold, and their key structural features have been well studied. However, the recent discovery of non-contiguous hydrophobic ensembles inside the protein kinase core shed new light on the internal organization of these molecules. Two hydrophobic “spines” traverse both lobes of the protein kinase molecule, providing a firm but flexible connection between its key elements. The spine model introduces a useful framework for analysis of intramolecular communications, molecular dynamics, and drug design. 相似文献
13.
Hochbaum D Barila G Ribeiro-Neto F Altschuler DL 《The Journal of biological chemistry》2011,286(1):859-866
cAMP is an ubiquitous second messenger. Localized areas with high cAMP concentration, i.e. cAMP microdomains, provide an elegant mechanism to generate signaling specificity and transduction efficiency. However, the mechanisms underlying cAMP effector targeting into these compartments is still unclear. Here we report the identification of radixin as a scaffolding unit for both cAMP effectors, Epac and PKA. This complex localizes in a submembrane compartment where cAMP synthesis occurs. Compartment disruption by shRNA and dominant negative approaches negatively affects cAMP action. Inhibition can be rescued by expression of Rap1b, a substrate for both Epac1 and PKA, but only in its GTP-bound and phosphorylated state. We propose that radixin scaffolds both cAMP effectors in a functional cAMP-sensing compartment for efficient signal transduction, using Rap1 as a downstream signal integrator. 相似文献
14.
Quevedo J Vianna MR Roesler R Martins MR de-Paris F Medina JH Izquierdo I 《Neurochemical research》2005,30(1):61-67
Adult male Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.4 mA footshock, 24 h training-test interval). Fifteen minutes before or 0, 1.5 or 3 hours after training, animals received a 0.8 l intrahippocampal infusion of the protein synthesis inhibitor anisomycin (80 g), the PKA inhibitor Rp-cAMP (0.05 g), the MAPK kinase inhibitor PD 098059 (50 M solution) or vehicle (phosphate buffer in saline, pH 7.4). Anisomycin, Rp-cAMP and PD 098059 impaired retention test performance in animals injected at different times, prior and after training. Pretraining with a low footshock intensity (0.2 mA) 24 h before training prevented the amnestic effect of all drugs studied. However, simple preexposure to the inhibitory avoidance apparatus did not alter the amnestic effects of all drugs. The results suggest that memory processing requires hippocampal mechanisms dependent on protein synthesis, PKA and MAPK kinase at different times after training. These findings suggest that weak training must be sufficient to produce some lasting cellular expression of the experience so that the enhancement of consolidation of a previously acquired memory is not dependent on protein synthesis, PKA or MAPK. 相似文献
15.
16.
The bisubstrate fluorescent probe ARC-583 (Adc-Ahx-(d-Arg)6-d-Lys(5-TAMRA)-NH2) and its application for the characterization of both ATP- and protein/peptide substrate-competitive inhibitors of protein kinases PKA (cyclic AMP-dependent protein kinase) and ROCK (rho kinase) in fluorescence polarization-based assay are described. High affinity of the probe (KD = 0.48 nM toward PKA) enables its application for the characterization of inhibitors with nanomolar and micromolar potency and determination of the active concentration of the kinase in individual experiments as well as in the high-throughput screening format. The probe can be used for the assessment of protein-protein interactions (e.g., between regulatory and catalytic subunits of PKA) and as a cyclic AMP biosensor. 相似文献
17.
Langer T Sreeramulu S Vogtherr M Elshorst B Betz M Schieborr U Saxena K Schwalbe H 《FEBS letters》2005,579(19):4049-4054
The catalytic subunit of cAMP-dependent protein kinase (PKA) can easily be expressed in Escherichia coli and is catalytically active. Four phosphorylation sites are known in PKA (S10, S139, T197 and S338), and the isolated recombinant protein is a mixture of different phosphorylated forms. Obtaining uniformly phosphorylated protein requires separation of the protein preparation leading to significant loss in protein yield. It is found that the mutant S10A/S139D/S338D has similar properties as the wild-type protein, whereas additional replacement of T197 with either E or D reduces protein expression yield as well as folding propensity of the protein. Due to its high sequence homology to Akt/PKB, which cannot easily be expressed in E. coli, PKA has been used as a surrogate kinase for drug design. Several mutations within the ATP binding site have been described to make PKA even more similar to Akt/PKB. Two proteins with Akt/PKB-like mutations in the ATP binding site were made (PKAB6 and PKAB8), and in addition S10, S139 and S338 phosphorylation sites have been removed. These proteins can be expressed in high yields but have reduced activity compared to the wild-type. Proper folding of all proteins was analyzed by 2D 1H, 15N-TROSY NMR experiments. 相似文献
18.
19.
Brittney McInnis Stevan Marcus 《Biochemical and biophysical research communications》2010,399(4):665-669
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1+ or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated. 相似文献