首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse.  相似文献   

2.
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed exclusively in skeletal muscle, where it is required for formation of the neuromuscular junction. MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. Here, we report the crystal structure of the agrin-responsive first and second immunoglobulin-like domains (Ig1 and Ig2) of the MuSK ectodomain at 2.2 A resolution. The structure reveals that MuSK Ig1 and Ig2 are Ig-like domains of the I-set subfamily, which are configured in a linear, semi-rigid arrangement. In addition to the canonical internal disulfide bridge, Ig1 contains a second, solvent-exposed disulfide bridge, which our biochemical data indicate is critical for proper folding of Ig1 and processing of MuSK. Two Ig1-2 molecules form a non-crystallographic dimer that is mediated by a unique hydrophobic patch on the surface of Ig1. Biochemical analyses of MuSK mutants introduced into MuSK(-/-) myotubes demonstrate that residues in this hydrophobic patch are critical for agrin-induced MuSK activation.  相似文献   

3.
Acetylcholinesterase (EC 3.1.1.7, AChE) is one of the components of the neuromuscular junction (NMJ). Its expression and targeting in the skeletal muscle fiber is therefore under the control of the mechanisms responsible for the formation of the highly complex structure of this synapse. Recently, it has been demonstrated that myotubes of the C2C12 mouse muscle cell line form highly differentiated pretzel-like postsynaptic accumulations of acetylcholine receptors (AChRs) in the complete absence of the nerve if they are cultured on the laminin coating. This finding questions previously stressed importance of the nerve-derived factors in NMJ synaptogenesis and therefore deserves additional testing. The aim of this paper was to test whether the reported nerve-independency can be demonstrated also in the cultured human muscle meaning that the findings on C2C12 cultures can be extrapolated also to the human muscle. In our experiments aneurally cultured human myotubes failed to form AChR clusters on its surface, no matter if they were grown on normal gelatine or laminin coating. However, when innervated by neurons extending from the rat embryonic spinal cord, human myotubes formed AChR clusters with elaborate topography but strictly on the areas contacted by the nerve. One can hypothesize that higher nerve dependency of the NMJ synaptogenesis in humans in comparison to other species reflects species-specific differences in the organization of movement. Humans have the highest "fractionation of movement" capacity which probably requests different, more nerve-controlled development of the motor system including nerve-restricted development of the neuromuscular contacts.  相似文献   

4.
The differentiation of the neuromuscular junction is a multistep process requiring coordinated interactions between nerve terminals and muscle. Although innervation is not needed for muscle production, the formation of nerve-muscle contacts, intramuscular nerve branching, and neuronal survival require reciprocal signals from nerve and muscle to regulate the formation of synapses. Following the production of muscle fibers, clusters of acetylcholine receptors (AChRs) are concentrated in the central regions of the myofibers via a process termed “prepatterning”. The postsynaptic protein MuSK is essential for this process activating possibly its own expression, in addition to the expression of AChR. AChR complexes (aggregated and stabilized by rapsyn) are thus prepatterned independently of neuronal signals in developing myofibers. ACh released by branching motor nerves causes AChR-induced postsynaptic potentials and positively regulates the localization and stabilization of developing synaptic contacts. These “active” contact sites may prevent AChRs clustering in non-contacted regions and counteract the establishment of additional contacts. ACh-induced signals also cause the dispersion of non-synaptic AChR clusters and possibly the removal of excess AChR. A further neuronal factor, agrin, stabilizes the accumulation of AChR at synaptic sites. Agrin released from the branching motor nerve may form a structural link specifically to the ACh-activated endplates, thereby enhancing MuSK kinase activity and AChR accumulation and preventing dispersion of postsynaptic specializations. The successful stabilization of prepatterned AChR clusters by agrin and the generation of singly innervated myofibers appear to require AChR-mediated postsynaptic potentials indicating that the differentiation of the nerve terminal proceeds only after postsynaptic specializations have formed.  相似文献   

5.
We previously demonstrated several nicotinic acetylcholine receptor (nAChR) subunits and associated proteins in human sperm. Here, we identified in sperm for the first time two additional nAChR-associated molecules: (1) agrin(SN)Z(+) in human sperm localized in the posterior post-acrosomal, neck, and flagellar mid-piece regions; (2) a low-molecular weight isoform of muscle-specific receptor tyrosine kinase in human and mouse sperm localized in the flagellar mid-piece of human sperm.  相似文献   

6.
The vertebrate neuromuscular junction (NMJ) is marked by molecular specializations that include postsynaptic clusters of acetylcholine receptor (AChR) and acetylcholinesterase (AChE). Whereas AChRs are aggregated in the postsynaptic muscle membrane to a density of 10,000/mum(2), AChE is concentrated, also to a high density, in the synaptic basement membrane (BM). In recent years considerable progress has been made in understanding the cellular and molecular mechanisms of AChR clustering. It is known that during the early stages of motoneuron-muscle interaction, the nerve-secreted proteoglycan agrin activates the muscle-specific kinase MuSK, which leads to the formation of a postsynaptic cytoskeletal scaffold that immobilizes and concentrates AChRs through a process generally accepted to involve diffusion-mediated trapping of the receptors. We have recently tested this diffusion-trap model at the single molecule level for the first time by using quantum-dot labeling to track individual AChRs during NMJ development. Our results showed that single AChRs exhibit Brownian-type movement, with diffusion coefficients of 10(-11) to 10(-9)cm(2)/s, until they become immobilized at "traps" assembled in response to synaptogenic stimuli. Thus, free diffusion of AChRs is an integral part of their clustering mechanism. What is the mechanism for AChE clustering? We previously showed that the A(12) asymmetric form of AChE binds to perlecan, a heparan-sulfate proteoglycan which in turn interacts with the transmembrane dystroglycan complex. Through this linkage AChE becomes bound to the muscle membrane and, like AChRs, may exhibit lateral mobility along the membrane. Consistent with this idea, pre-existent AChE at the cell surface becomes clustered together with AChRs following synaptogenic stimulation. Future studies testing diffusion-mediated trapping of AChE should provide insights into the synaptic localization of BM-bound molecules at the NMJ.  相似文献   

7.
During formation of the neuromuscular junction (NMJ), agrin secreted by motor axons signals the embryonic muscle cells to organize a postsynaptic apparatus including a dense aggregate of acetylcholine receptors (AChRs). Agrin signaling at the embryonic NMJ requires the activity of nitric oxide synthase (NOS). Common downstream effectors of NOS are guanylate cyclase (GC), which synthesizes cyclic GMP, and cyclic GMP-dependent protein kinase (PKG). Here we show that GC and PKG are important for agrin signaling at the embryonic NMJ of the frog, Xenopus laevis. Inhibitors of both GC and PKG reduced endogenous AChR aggregation in embryonic muscles by 50-85%, and blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. A cyclic GMP analog, 8-bromo-cyclic GMP, increased endogenous AChR aggregation in embryonic muscles to 3- to 4-fold control levels. Overexpression of either GC or PKG in embryos increased AChR aggregate area by 60-170%, whereas expression of a dominant negative form of GC inhibited endogenous aggregation by 50%. These results indicate that agrin signaling in embryonic muscle cells requires the activity of GC and PKG as well as NOS.  相似文献   

8.
9.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

10.
Agrin, a synapse-organizing protein externalized by motor axons at the neuromuscular junction (NMJ), initiates a signaling cascade in muscle cells leading to aggregation of postsynaptic proteins, including acetylcholine receptors (AChRs). We examined whether nitric oxide synthase (NOS) activity is required for agrin-induced aggregation of postsynaptic AChRs at the embryonic NMJ in vivo and in cultured muscle cells. Inhibition of NOS reduced AChR aggregation at embryonic Xenopus NMJs by 50-90%, whereas overexpression of NOS increased AChR aggregate area 2- to 3-fold at these synapses. NOS inhibitors completely blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. Application of NO donors to muscle cells induced AChR clustering in the absence of agrin. Our results indicate that NOS activity is necessary for postsynaptic differentiation of embryonic NMJs and that NOS is a likely participant in the agrin-MuSK signaling pathway of skeletal muscle cells.  相似文献   

11.
Ling KK  Siow NL  Choi RC  Tsim KW 《FEBS letters》2005,579(11):2469-2474
The role of adenosine 5'-triphosphate (ATP) and P2Y(1) nucleotide receptor in potentiating agrin-induced acetylcholine receptor (AChR) aggregation is being demonstrated in a co-culture system of NG108-15 cell, a mouse neuroblastoma X rat glioma hybrid cell line that resembles spinal motor neuron, with C2C12 myotube. In the co-cultures, antagonized P2Y(1) receptors showed a reduction in NG108-15 cell-induced AChR aggregation. Parallel to this observation, cultured NG108-15 cell secreted ATP into the conditioned medium in a time-dependent manner. Enhancement of ATP release from the cultured NG108-15 cells by overexpression of active mutants of small GTPases increased the aggregation of AChRs in co-culturing with C2C12 myotubes. In addition, ecto-nucleotidase was revealed in the co-culture, which rapidly degraded the applied ATP. These results support the notion that ATP has a role in directing the formation of post-synaptic apparatus in vertebrate neuromuscular junctions.  相似文献   

12.
Agrin released from motor nerve terminals activates a muscle-specific receptor tyrosine kinase (MuSK) in muscle cells to trigger formation of the skeletal neuromuscular junction. A key step in synaptogenesis is the aggregation of acetylcholine receptors (AChRs) in the postsynaptic membrane, a process that requires the AChR-associated protein, rapsyn. Here, we mapped domains on MuSK necessary for its interactions with agrin and rapsyn. Myotubes from MuSK(-/)- mutant mice form no AChR clusters in response to agrin, but agrin-responsiveness is restored by the introduction of rat MuSK or a Torpedo orthologue. Thus, MuSK(-/)- myotubes provide an assay system for the structure-function analysis of MuSK. Using this system, we found that sequences in or near the first of four extracellular immunoglobulin-like domains in MuSK are required for agrin responsiveness, whereas sequences in or near the fourth immunoglobulin-like domain are required for interaction with rapsyn. Analysis of the cytoplasmic domain revealed that a recognition site for the phosphotyrosine binding domain-containing proteins is essential for MuSK activity, whereas consensus binding sites for the PSD-95/Dlg/ZO-1-like domain-containing proteins and phosphatidylinositol-3-kinase are dispensable. Together, our results indicate that the ectodomain of MuSK mediates both agrin- dependent activation of a complex signal transduction pathway and agrin-independent association of the kinase with other postsynaptic components. These interactions allow MuSK not only to induce a multimolecular AChR-containing complex, but also to localize that complex to a primary scaffold in the postsynaptic membrane.  相似文献   

13.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   

14.
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 Å resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.  相似文献   

15.
(1) The rising phase of minature endplate currets was recorded at the frog's neuromuscular junction using both the two electrode voltage clamp and a single external electrode, or Strickholm, voltage clamp. (2) The Q(10) of the miniature endplate current rising phase was 2.3 in a variety of solutions selected to alter presynaptic behavior. (3) Increasing the solution's viscosity by an amount sufficient to slow the diffusion coefficient of acetylcholine by a third has no effect on the duration of the rising or the decay phase. This solution does seem to further slow the miniature endplate current decay phase, but not the rising phase, after inhibition of the acetylcholinesterase. (4) As the membrane potential is made more positive, the miniature endplate current rising phase is prolonged, with an e-fold slowing per 170 mV change. (5) It is concluded that neither presynaptic nor subsynaptic events determine the rising phase of miniature endplate currents at the frog neuromuscular junction. Rather, the limiting step occurs within the membrane and is most likely a change in the binding constant of the receptor for the acetylcholine molecule.  相似文献   

16.
The influence of stimulus pulse duration on calcium mobilization triggering facilitation of evoked [(3)H]acetylcholine ([(3)H]ACh) release by the A(2A) adenosine receptor agonist CGS 21680C was studied in the rat phrenic nerve-hemidiaphragm. The P-type calcium channel blocker omega-agatoxin IVA (100 nM) decreased [(3)H]ACh release evoked with pulses of 0.04-ms duration, whereas nifedipine (1 microM) inhibited transmitter release with pulses of 1-ms duration. Depletion of intracellular calcium stores by thapsigargin (2 microM) decreased [(3)H]ACh release evoked by pulses of 1 ms, an effect observed even in the absence of extracellular calcium. With short (0.04-ms) stimulation pulses, when P-type calcium influx triggered transmitter release, facilitation of [(3)H]ACh release by CGS 21680C (3 nM) was attenuated by both thapsigargin (2 microM) and nifedipine (1 microM). With longer stimuli (1 ms), a situation in which both thapsigargin-sensitive internal stores and L-type channels are involved in ACh release, pretreatment with either omega-agatoxin IVA (100 nM) or nifedipine (1 microM) reduced the facilitatory effect of CGS 21680C (3 nM). The results suggest that A(2A) receptor activation facilitates ACh release from motor nerve endings through alternatively mobilizing the available calcium pools (thapsigargin-sensitive internal stores and/or P- or L-type channels) that are not committed to the release process in each stimulation condition.  相似文献   

17.
Abstract: Experiments on the S27 cell line, a variant of the C2 mouse muscle cell line that shows reduced incorporation of 35SO4 into proteoglycans, suggest that proteoglycans play a role in the clustering of acetylcholine receptors, an early step in synaptogenesis. Thus, unlike the C2 line, S27 myotubes do not form acetylcholine receptor clusters on their surface in aneural cultures and form few clusters in response to agrin. We have examined the proteoglycans synthesized by S27 myotubes to define further the biochemical defect in these cells. Gel filtration analysis of radiolabeled proteoglycans synthesized by C2 and S27 myotubes shows that both cell types express a similarly polydisperse complement of proteoglycans. Both radiolabeled heparan sulfate proteoglycans and chondroitin/dermatan sulfate proteoglycans are reduced in S27 myotubes, with the chondroitin/dermatan sulfate proteoglycans showing a distinct reduction in size. The core protein of perlecan, a major proteoglycan species in muscle, was present in S27 cells and unaltered in electrophoretic mobility. Thus a principal deficiency in S27 cells appears to be a defect in glycosaminoglycan chain elongation.  相似文献   

18.
19.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin.  相似文献   

20.
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号