首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipoprotein lipase (LPL) is dependent on apolipoprotein CII (apoCII), a component of plasma lipoproteins, for function in vivo. The hydrophobic fluorescent probe 1,1'-bis(anilino)-4,4'-bis(naphthalene)-8,8'-disulfonate (bis-ANS) was found to be a potent inhibitor of LPL. ApoCII prevented the inhibition by bis-ANS, and was also able to restore the activity of inhibited LPL in a competitive manner, but only with triacylglycerols with acyl chains longer than three carbons. Studies of fluorescence and surface plasmon resonance indicated that LPL has an exposed hydrophobic site for binding of bis-ANS. The high affinity interaction was characterized by an equilibrium constant Kd of 0.10-0.26 microm and by a relatively high on rate constant kass = 2.0 x 10(4) m(-1) s(-1) and a slow off-rate with a dissociation rate constant kdiss = 1.2 x 10(-4) s(-1). The high affinity binding of bis-ANS did not influence interaction of LPL with heparin or with lipid/water interfaces and did not dissociate the active LPL dimer into monomers. Analysis of fragments of LPL after photoincorporation of bis-ANS indicated that the high affinity binding site was located in the middle part of the N-terminal folding domain. We propose that bis-ANS binds to an exposed hydrophobic area that is located close to the active site. This area may be the binding site for individual substrate molecules and also for apoCII.  相似文献   

2.
J C Lee  L C Yeh  P M Horowitz 《Biochimie》1991,73(9):1245-1247
Binding studies of yeast 40S ribosome with bis (1,8-anilinonaphthalenesulfonate) (bis-ANS) revealed the binding of 3-4 molecules of bis-ANS per ribosome with a dissociation constant (Kd) of 1.45 microM. Binding of AUG to the 40S subunits resulted in a concentration-dependent decrease in the bis-ANS fluorescence without displacing all of the bound bis-ANS from the ribosomes. The residual bis-ANS fluorescence at saturation with AUG corresponds to about 3 molecules of bis-ANS per ribosome. Thus AUG displaces one of the bound bis-ANS molecules. The data suggest that AUG binds at a hydrophobic site on the yeast 40S subunit.  相似文献   

3.
Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV–visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV–visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.  相似文献   

4.
The binding of prantschimgin (PRAN) to matrix metalloproteinase 9 (MMP9) was investigated using multiple techniques. Fluorescence spectroscopy showed that PRAN could quench the MMP9 fluorescence spectra. Changes in the UV/vis and Fourier transform infrared (FTIR) spectra were observed upon ligand binding, along with a significant degree of tryptophan fluorescence quenching on complex formation. The interaction of PRAN with MMP9 has also been studied using molecular docking and molecular dynamics (MD) simulation. The binding models demonstrated aspects of PRAN's conformation, active site interaction, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of PRAN revealed that the ligand is bound in a large hydrophobic cavity of MMP9. The MD simulation results suggested that this ligand can interact with the protein, with little affecting the secondary structure. The results not only lead to a better understanding of interactions between PRAN and MMP9, but also provide useful data about the influence of PRAN on the structural conformation. The data provided in this study will be useful for designing a new agonist of MMP9 with the desired activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Crystallography studies on several members of the bone morphogenetic protein (BMP) receptors suggested that hydrophobic regions in these proteins play an important role in their structure and function. In the present study, the environment sensitive fluorescent probe 4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid (bis-ANS) was used to study the hydrophobic regions of the extracellular domain of the type I and II receptors for bone morphogenetic proteins (ecBMPR-IB and ecBMPR-II). A single bis-ANS binding site per receptor molecule was found for both receptors, but the two receptors interacted with bis-ANS with distinctive characteristics. A significant shift in the emission maximum from 498 to 510 nm was detected when bis-ANS binds ecBMPR-IB, but a negligible change in the emission maximum was observed when the dye binds ecBMPR-II. Under identical reaction conditions, the maximum fluorescence intensities of the probe (I(max)) for the ecBMPR-IB and -II are 4.0 and 6.2 x 10(4) arbitrary units, respectively. The probe binds to ecBMPR-IB and -II with K(d)=11.0 and 17.5 microM, respectively. The bis-ANS modified site on both receptor types was not readily accessible to acrylamide quenching. Fluorescence energy transfer experiments further revealed close proximity between the tyrosine (in ecBMPR-IB) and the tryptophan residue (in ecBMPR-II) and the respective bis-ANS binding site in these receptors. The binding of bis-ANS did not alter the ligand binding activity of ecBMPR-IB, but enhanced that of ecBMPR-II. These results show that the bis-ANS-modified hydrophobic site on the ecBMPR-IB and -II molecules plays a different functional role.  相似文献   

6.
Shi R  Li J  Cao X  Zhu X  Lu X 《Journal of molecular modeling》2011,17(8):1941-1951
Human P450 protein CYP2C9 is one of the major drug-metabolizing isomers, contributing to the oxidation of 16% of the drugs currently in clinical use. To examine the interaction mechanisms between CYP2C9 and proton pump inhibitions (PPIs), we used molecular docking and molecular dynamics (MD) simulation methods to investigate the conformations and interactions around the binding sites of PPIs/CYPP2C9. Results from molecular docking and MD simulations demonstrate that nine PPIs adopt two different conformations (extended and U-bend structures) at the binding sites and position themselves far above the heme of 2C9. The presence of PPIs changes the secondary structures and residue flexibilities of 2C9. Interestingly, at the binding sites of all PPI–CYP2C9 complexes except for Lan/CYP2C9, there are hydrogen-bonding networks made of PPIs, water molecules, and some residues of 2C9. Moreover, there are strong hydrophobic interactions at all binding sites for PPIs/2C9, which indicate that electrostatic interactions and hydrophobic interactions appear to be important for stabilizing the binding sites of most PPIs/2C9. However, in the case of Lan/2C9, the hydrophobic interactions are more important than the electrostatic interactions for stabilizing the binding site. In addition, an interesting conformational conversion from extended to U-bend structures was observed for pantoprazole, which is attributed to an H-bond interaction in the binding pocket, an internal π–π stacking interaction, and an internal electrostatic interaction of pantoprazole.  相似文献   

7.
Structural modification through binding interaction of plasma protein bovine serum albumin (BSA) with an extrinsic charge transfer fluorophore 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) and its response to external perturbation due to interactions with surfactant sodium dodecyl sulphate (SDS) have been explored at physiological pH by steady state absorption, emission, fluorescence anisotropy, red edge excitation shift, far-UV circular dichroism and time resolved spectral measurements in combination with Molecular Docking and Molecular Dynamics (MD) simulation. Interaction of the probe with BSA is reflected by a small change in protein secondary structure with fluorescence enhancement and blue shift of probe emission. Molecular docking studies revealed that the probe binds to the hydrophobic cavity of sub-domain IIA of BSA. The distance for energy transfer from the tryptophan of BSA to the bound DMAPPDA measured by Fluorescence Resonance Energy Transfer is in good agreement with the molecular docking results. MD simulation predicts stabilization of the complex with respect to the bare molecule. Interaction of BSA and SDS with DMAPPDA supports the movement of the probe from hydrophilic free water region to a more restricted hydrophobic zone inside the protein.  相似文献   

8.
Kir6.2, a key component of the ATP-sensitive potassium channel (KATP), can directly interact with imidazoline derivatives – a kind of potential antidiabetic drug. This paper explores the interaction of Kir6.2 with four imidazoline derivatives by using AutoDock and Gromacs programs. The docking results reveal that the binding sites of the four imidazolines are different from each other: Idazoxan lies in a polar active pocket formed by residues H177, G299 and R301; while RX871024 is situated in a hydrophobic pocket composed of residues F168, M169 and I296; as for Efaroxan and Clonidine, residues H175, R177, K67 and W68 constitute the binding pocket. Based on the docking results, the four imidazoline/Kir6.2 complexes with explicit water and infinite lipid bilayer membrane were constructed to perform molecular dynamics (MD) simulation. The results of MD calculation are as follows: dioleoyl phosphatidyl choline bilayer membrane stabilised the structure of these complexes through polar and nonpolar interaction; Idazoxan and RX871024 are stably combined with Kir6.2 in their docking sites; Efaroxan has a minor change in contrast to the docking result; whereas Clonidine has an obvious change compared to docking conformation. The binding sites and interaction modes of these imidazolines with Kir6.2 may provide theoretical support in the pharmacological study of imidazoline drugs.  相似文献   

9.
D P Hong  Y Hagihara  H Kato  Y Goto 《Biochemistry》2001,40(27):8092-8100
Beta2-glycoprotein I (beta2-GPI), which consists of four complement control protein modules and a distinctly folded fifth C-terminal domain, is an essential cofactor for the binding to phospholipids of anti-cardiolipin antibodies, isolated from patients with anti-phospholipid antibody syndrome, and its fifth domain has attracted attention as a specific phospholipid-binding site. We focused on the fifth domain of beta2-GPI (Domain V) and examined the interaction of intact Domain V, Domains IV-V, and nicked Domain V with various hydrophobic ligands, as a model molecule of phospholipid. We found that electrostatic and hydrophobic interactions are important for Domain V binding to the ligand molecules. We also found that, while Domain IV has no significant effect on the interactions with ligands, the nicked Domain V with cleavage in the flexible loop decreases the affinity, indicating that the flexible loop region is the binding site of the hydrophobic ligands. The synthetic peptide corresponding to the loop region was disordered and interacted with bis-ANS, confirming the critical role of the loop region. To clarify the nature of the interaction between the loop region and hydrophobic compounds, we prepared the reduced and alkylated Domain V, which was denatured but was assumed to be a collapsed state. Alkylation by iodoacetic acid decreased the interaction of Domain V with bis-ANS, probably because the protein net charge was decreased by the six introduced carboxyl groups and consequently the electrostatic interactions were decreased. In contrast, Domain V alkylated by iodoacetamide, therefore retaining a high positive net charge, bound bis-ANS more strongly than the intact Domain V. These results suggested that the interaction of Domain V with hydrophobic compounds through the flexible loop is similar to the binding of hydrophobic compounds to the protein folding intermediate.  相似文献   

10.
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.  相似文献   

11.
Lipase from Bacillus subtilis is a lidless lipase that does not show interfacial activation. Due to exposure of the active site to solvent, the lipase tends to aggregate. We have investigated the solution properties and unfolding of the lipase in guanidinium chloride (GdmCl) to understand its aggregation behavior and stability. Dynamic light scattering (DLS), near- and far-UV circular dichroism, activity and intrinsic fluorescence of lipase suggest that the protein undergoes unfolding between 1 M and 2 M GdmCl. The polarity sensitive dye, 1,1,-bis-(4anilino)naphthalene-5,5-disulfonic acid (bis-ANS), a probe for hydrophobic pockets, binds cooperatively to the native lipase. An intermediate populated in 1.75 M GdmCl that strongly binds bis-ANS was identified. Tendency of the native protein to aggregate in solution and specific binding to bis-ANS confirms that the lipase has exposed hydrophobic pockets and this surface hydrophobicity strongly influences the unfolding pathway of the lipase in GdmCl.  相似文献   

12.
J Secnik  Q Wang  C M Chang  J E Jentoft 《Biochemistry》1990,29(34):7991-7997
The structural and functional properties of the nucleocapsid (NC) protein of the avian myeloblastosis virus were examined by steady-state fluorescence and fluorescence anisotropy measurements of the complex between the NC and the extrinsic fluorophore 4,4'-bis(phenylamino)(1,1'-binaphthalene)-5,5'-disulfonic acid (bis-ANS). The intrinsic fluorescence of bis-ANS is enhanced many fold upon forming a complex with the NC. Between 2 and 10 molecules of bis-ANS bind strongly to the NC, with an overall Kd of less than 10(-6) M. The emission of bis-ANS in the complex can also be induced by excitation at 298 nm, indicating that energy is transferred from Trp 80, the sole tryptophan in the NC protein, to bis-ANS. The energy transferred between the Trp 80 and bis-ANS was analyzed to yield a calculated distance of separation between these fluorophores of 28 +/- 3 A; thus, Trp 80 is well removed from the nearest bound bis-ANS. The fluorescence emission of bis-ANS in the NC.bis-ANS complex is efficiently quenched by added salts and by poly(A), suggesting that salt (presumably anions), nucleic acid, and bis-ANS bind to the same, positively charged region on the NC protein. A site size of six nucleotides was determined for nucleic acid binding to the NC protein, with an estimated Kd of less than 10(-6) M. Salt (anion) binding is strong, but nonspecific, with a Kapp of 4 mM, raising the possibility that anion binding to the NC protein might regulate the interaction of the NC with viral RNA inside the host cell.  相似文献   

13.
Zoete V  Meuwly M  Karplus M 《Proteins》2004,55(3):568-581
Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs.  相似文献   

14.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   

15.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

16.
Abstract

The binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M?1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since β-Cyclodextrin (βCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (βCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of βCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.

Communicated by Ramaswamy H. Sarma  相似文献   

17.
Protein disulfide isomerase (PDI) is a folding assistant of the eukaryotic endoplasmic reticulum, but it also binds the hormones, estradiol, and 3,3',5-triiodo-l-thyronine (T(3)). Hormone binding could be at discrete hormone binding sites, or it could be a nonphysiological consequence of binding site(s) that are involved in the interaction PDI with its peptide and protein substrates. Equilibrium dialysis, fluorescent hydrophobic probe binding (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS)), competition binding, and enzyme activity assays reveal that the hormone binding sites are distinct from the peptide/protein binding sites. PDI has one estradiol binding site with modest affinity (2.1 +/- 0.5 microm). There are two binding sites with comparable affinity for T(3) (4.3 +/- 1.4 microm). One of these overlaps the estradiol site, whereas the other binds the hydrophobic probe, bis-ANS. Neither estradiol nor T(3) inhibit the catalytic or chaperone activity of PDI. Although the affinity of PDI for the hormones estradiol and T(3) is modest, the high local concentration of PDI in the endoplasmic reticulum (>200 microm) would drive hormone binding and result in the association of a substantial fraction (>90%) of the hormones in the cell with PDI. High capacity, low affinity hormone sites may function to buffer hormone concentration in the cell and allow tight, specific binding to the true receptor while preserving a reasonable number of hormone molecules in the very small volume of the cellular environment.  相似文献   

18.
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed.  相似文献   

19.
The structures and stabilities of recombinant chicken muscle troponin I (TnI) and T (TnT) were investigated by a combination of bis-ANS binding and equilibrium unfolding studies. Unlike most folded proteins, isolated TnI and TnT bind the hydrophobic fluorescent probe bis-ANS, indicating the existence of solvent-exposed hydrophobic domains in their structures. Bis-ANS binding to binary or ternary mixtures of TnI, TnT and troponin C (TnC) in solution is significantly lower than binding to the isolated subunits, which can be explained by burial of previously exposed hydrophobic domains upon association of the subunits to form the native troponin complex. Equilibrium unfolding studies of TnT and TnI by guanidine hydrochloride and urea monitored by changes in far-UV CD and bis-ANS fluorescence revealed noncooperative folding transitions for both proteins and the existence of partially folded intermediate states. Taken together, these results indicate that isolated TnI and TnT are partially unstructured proteins, and suggest that conformational plasticity of the isolated subunits may play an important role in macromolecular recognition for the assembly of the troponin complex.  相似文献   

20.
The extent of hydrophobic exposure upon bis-ANS binding to the functional apical domain fragment of GroEL, or minichaperone (residues 191-345), was investigated and compared with that of the GroEL tetradecamer. Although a total of seven molecules of bis-ANS bind cooperatively to this minichaperone, most of the hydrophobic sites were induced following initial binding of one to two molecules of probe. From the equilibrium and kinetics studies at low bis-ANS concentrations, it is evident that the native apical domain is converted to an intermediate conformation with increased hydrophobic surfaces. This intermediate binds additional bis-ANS molecules. Tyrosine fluorescence detected denaturation demonstrated that bis-ANS can destabilize the apical domain. The results from (i) bis-ANS titrations, (ii) urea denaturation studies in the presence and absence of bis-ANS, and (iii) intrinsic tyrosine fluorescence studies of the apical domain are consistent with a model in which bis-ANS binds tightly to the intermediate state, relatively weakly to the native state, and little to the denatured state. The results suggest that the conformational changes seen in apical domain fragments are not seen in the intact GroEL oligomer due to restrictions imposed by connections of the apical domain to the intermediate domain and suppression of movement due to quaternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号