首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator in insulin signaling pathways, is regarded as a potential target for the treatment of type II diabetes and obesity. However, the mechanism underlying the selectivity of PTP1B inhibitors against T-cell protein tyrosine phosphatase (TCPTP) remains controversial, which is due to the high similarity between PTP1B and TCPTP sequence and the fact that no ligand–protein complex of TCPTP has been established yet. Here, the accelerated molecular dynamics (aMD) method was used to investigate the structural dynamics of PTP1B and TCPTP that are bound by two chemically similar inhibitors with distinct selectivity. The conformational transitions during the “open” to “close” states of four complexes were captured, and free energy profiles of important residue pairs were analyzed in detail. Additional MM-PBSA calculations confirmed that the binding free energies of final states were consistent with the experimental results, and the energetic contributions of important residues were further investigated by alanine scanning mutagenesis. By comparing the four complexes, the different conformational behavior of WPD-loop, R-loop, and the second pTyr binding site induced by inhibitors were featured and found to be crucial for the selectivity of inhibitors. This study provides new mechanistic insights of specific binding of inhibitors to PTP1B and TCPTP, which can be exploited to the further structural-based inhibitor design.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
We have developed a protocol for rapid purification of T cell protein tyrosine phosphatase (TCPTP) and the structurally related protein tyrosine phosphatase-1B (PTP-1B) from bacterial cells. The pH profile for TCPTP was bell-shaped with an optimum of 5.5. The catalytic domain and full-length versions of TCPTP bound a potent inhibitor with affinities similar to those of PTP-1B. The K(m) values for the catalytic domains of TCPTP and PTP-1B increased with increasing ionic strength, whereas the k(cat) values remained unchanged. Arrhenius plots revealed that TCPTP and PTP-1B possess similar activation energies of 25.3+/-1.2 and 18.4+/-3.0 kJ/mol, respectively. Increasing solvent microviscosity (up to 40% (w/v) sucrose) did not affect k(cat)/K(m) of either enzyme. However, high sucrose concentrations protected both enzymes from thermal inactivation. These studies show that, although they share a 72% amino acid sequence identity within their catalytic domains, TCPTP and PTP-1B are functionally very similar in vitro.  相似文献   

4.
Integrin-mediated cell adhesion regulates a multitude of cellular responses, including proliferation, survival and cross-talk between different cellular signalling pathways. So far, integrins have been mainly shown to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signalling. Here we show that a collagen-binding integrin alpha(1)beta(1) functions as a negative regulator of epidermal growth factor receptor (EGFR) signalling through the activation of a protein tyrosine phosphatase. The cytoplasmic tail of alpha(1) integrin selectively interacts with a ubiquitously expressed protein tyrosine phosphatase TCPTP (T-cell protein tyrosine phosphatase) and activates it after cell adhesion to collagen. The activation results in reduced EGFR phosphorylation after EGF stimulation. Introduction of the alpha(1) cytoplasmic domain peptide into cells induces phosphatase activation and inhibits EGF-induced cell proliferation and anchorage-independent growth of malignant cells. These data are the first demonstration of the regulation of TCPTP activity in vivo and represent a new molecular paradigm of integrin-mediated negative regulation of receptor tyrosine kinase signalling.  相似文献   

5.
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure–activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors.  相似文献   

6.
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network.  相似文献   

7.
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.  相似文献   

8.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

9.
10.
α-Haemolysin (HlyA) is a toxin secreted by pathogenic Escherichia coli, whose lytic activity requires submillimolar Ca2+ concentrations. Previous studies have shown that Ca2+ binds within the Asp and Gly rich C-terminal nonapeptide repeat domain (NRD) in HlyA. The presence of the NRD puts HlyA in the RTX (Repeats in Toxin) family of proteins. We tested the stability of the whole protein, the amphipathic helix domain and the NRD, in both the presence and absence of Ca2+ using native HlyA, a truncated form of HlyAΔN601 representing the C-terminal domain, and a novel mutant HlyA W914A whose intrinsic fluorescence indicates changes in the N-terminal domain. Fluorescence and infrared spectroscopy, tryptic digestion, and urea denaturation techniques concur in showing that calcium binding to the repeat domain of α-haemolysin stabilizes and compacts both the NRD and the N-terminal domains of HlyA. The stabilization of the N-terminus through Ca2+ binding to the C-terminus reveals long-range inter-domain structural effects. Considering that RTX proteins consist, in general, of a Ca2+-binding NRD and separate function-specific domains, the long-range stabilizing effects of Ca2+ in HlyA may well be common to other members of this family.  相似文献   

11.
The presence of the Z mutation (Glu342Lys) is responsible for more than 95% of α1-antitrypsin (α1AT) deficiency cases. It leads to increased polymerization of the serpin α1AT during its synthesis and in circulation. It has been proposed that the Z mutation results in a conformational change within the folded state of antitrypsin that enhances its polymerization. In order to localize the conformational change, we have created two single tryptophan mutants of Z α1AT and analyzed their fluorescence properties. α1AT contains two tryptophan residues that are located in distinct regions of the molecule: Trp194 at the top of β-sheet A and Trp238 on β-sheet B. We have replaced each tryptophan residue individually with a phenylalanine in order to study the local environment of the remaining tryptophan residue in both M and Z α1AT. A detailed fluorescence spectroscopic analysis of each mutant was carried out, and we detected differences in the emission spectrum, the Stern-Volmer constant for potassium iodide quenching and the anisotropy of only Trp194 in Z α1AT compared to M α1AT. Our data reveal that the Z mutation results in a conformational change at the top of β-sheet A but does not affect the structural integrity of β-sheet B.  相似文献   

12.
13.
Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING‐E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome‐mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA‐mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT. GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self‐ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP‐mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.  相似文献   

14.
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca2+ for the activation of contractile apparatus. The best described pathway for L-type Ca2+ current (ICa,L) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on ICa,L. Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of ICa,L, and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of ICa,L by inhibiting PKA activity; (iii) Gαs are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.  相似文献   

15.
Song Z  He XP  Li C  Gao LX  Wang ZX  Tang Y  Xie J  Li J  Chen GR 《Carbohydrate research》2011,(1):1320-145
The synthesis of triazole-linked glycosyl acetophenone, benzoic acid, and α-ketocarboxylic acid derivatives was readily achieved via Cu(I)-catalyzed azide–alkyne cycloaddition (‘click’ reaction) in excellent yields of 93–97%. Among the synthesized glycoconjugates, the triazolyl α-ketocarboxylic acids were identified as the most potent protein tyrosine phosphatase 1B (PTP1B) inhibitors with micromole-ranged IC50 values and moderate-to-good selectivity over a panel of homologous PTPs including TCPTP (4.6-fold), LAR (>30-fold), SHP-1 (>30-fold) and SHP-2 (>30-fold). Moreover, a docking simulation was conducted to propose a plausible binding mode of the glucosyl α-ketocarboxylic acid triazole with the enzymatic target.  相似文献   

16.
The serpinopathies encompass a large number of diseases caused by inappropriate conformational change and self-association (polymerization) of a serpin (serine proteinase inhibitor) molecule. The most common serpinopathy is α1-antitrypsin (α1AT) deficiency, which is associated with an increased risk for liver cirrhosis, hepatocellular carcinoma and early-onset emphysema. The Z variant of α1AT, which accounts for 95% of all cases of α1AT deficiency, polymerizes during synthesis and after secretion. Here, we show using intrinsic and extrinsic fluorescence probes that Z α1AT exists in a non-native conformation. We examined the thermodynamic stability by transverse urea gradient gel electrophoresis, thermal denaturation and equilibrium guanidine hydrochloride unfolding and found that, despite structural differences between the two proteins, wild-type α1AT and Z α1AT display similar unfolding pathways and thermodynamic stabilities. Far-UV circular dichroism and bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid, dipotassium salt) fluorescence suggest that the intermediate ensembles formed during unfolding of wild-type α1AT and Z α1AT are characterized by similar structural features. Kinetic analysis of the unfolding transition showed that Z α1AT unfolds at least 1.5-fold faster than the wild type. The biological implications of these data are discussed.  相似文献   

17.
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.  相似文献   

18.
A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV–Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC50 at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 106 and 1.87 × 106 M−1 at 310 K for 2 and 4, respectively.  相似文献   

19.
Two series of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups were identified as competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors. Among the compounds studied, IIIv was found to have the best in vitro inhibition activity against PTP1B (IC50?=?0.67?±?0.09?µM) and the best selectivity (9-fold) between PTP1B and T-cell protein tyrosine phosphatase (TCPTP). Molecular docking studies demonstrated that compounds IIIm, IIIv and IVg could occupy simultaneously at both the catalytic site and the adjacent pTyr binding site. These results provide novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

20.
A series of novel heterocyclic carboxylic acid based protein tyrosine phosphatase 1B (PTP1B) inhibitors with hydrophobic tail have been synthesized and characterized. Structure-activity relationship (SAR) optimization resulted in identification of several potent, selective (over the highly homologous T-cell protein tyrosine phosphatase, TCPTP) and metabolically stable PTP1B inhibitors. Compounds 7a, 19a and 19c showed favorable cell permeability and pharmacokinetic properties in mouse with moderate to very good oral (% F=13-70) bio-availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号