首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the first detailed thermodynamic analysis of simplified proteins by differential scanning calorimetry (DSC). The experiments were carried out with five simplified BPTI variants, whose structures and activities have been reported, in which several residues not essential for specifying the tertiary structure were replaced by alanine. In most aspects, the thermodynamics of simplified proteins were very similar to, if not essentially identical with, those of natural proteins. In particular, they undergo a highly cooperative two-state thermal unfolding process with a large enthalpy change, which is a thermodynamic hallmark of the native state of natural globular proteins. Furthermore, the specific enthalpy and entropy changes upon unfolding at 110 degrees C were close to values invariably observed for small natural globular proteins (55 J g(-1) and ~16 J K(-1) g(-1), respectively). On the other hand, two simplified BPTI variants, BPTI-21 and BPTI-22 (containing 21 and 22 alanine residues), were enthalpically stabilized while entropically destabilized with respect to the reference BPTI-[5,55] molecule. This peculiar type of entropy-enthalpy compensation is in sharp contrast to the usual enthalpy destabilization/entropy stabilization observed in mutational studies of natural proteins. Overall, we conclude that a thermodynamic native state can be achieved by proteins encoded with extensively simplified sequences.  相似文献   

2.
3.
Selenium is a critical trace element, with deficiency associated with numerous diseases including cardiovascular disease, diabetes, and cancer. Selenomethionine (SeMet; a selenium analogue of the amino acid methionine, Met) is a major form of organic selenium and an important dietary source of selenium for selenoprotein synthesis in vivo. As selenium compounds can be readily oxidized and reduced, and selenocysteine residues play a critical role in the catalytic activity of the key protective enzymes glutathione peroxidase and thioredoxin reductase, we investigated the ability of SeMet (and its sulfur analogue, Met) to scavenge hydroperoxides present on amino acids, peptides, and proteins, which are key intermediates in protein oxidation. We show that SeMet, but not Met, can remove these species both stoichiometrically and catalytically in the presence of glutathione (GSH) or a thioredoxin reductase (TrxR)/thioredoxin (Trx)/NADPH system. Reaction of the hydroperoxide with SeMet results in selenoxide formation as detected by HPLC. Recycling of the selenoxide back to SeMet occurs rapidly with GSH, TrxR/NADPH, or a complete TrxR/Trx/NADPH reducing system, with this resulting in an enhanced rate of peroxide removal. In the complete TrxR/Trx/NADPH system loss of peroxide is essentially stoichiometric with NADPH consumption, indicative of a highly efficient system. Similar reactions do not occur with Met under these conditions. Studies using murine macrophage-like J774A.1 cells demonstrate a greater peroxide-removing capacity in cells supplemented with SeMet, compared to nonsupplemented controls. Overall, these findings demonstrate that SeMet may play an important role in the catalytic removal of damaging peptide and protein oxidation products.  相似文献   

4.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

5.
The Tm-2 gene of tomato and its allelic gene, Tm-22, confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-22, Tm-22 confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-22. Although resistance induced by Tm-2 and Tm-22 is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-22 induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-22 but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-22 is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-22 are involved in HR cell death.  相似文献   

6.
Energetics of protein folding   总被引:5,自引:0,他引:5  
The energetics of protein folding determine the 3D structure of a folded protein. Knowledge of the energetics is needed to predict the 3D structure from the amino acid sequence or to modify the structure by protein engineering. Recent developments are discussed: major factors are reviewed and auxiliary factors are discussed briefly. Major factors include the hydrophobic factor (burial of non-polar surface area) and van der Waals interactions together with peptide hydrogen bonds and peptide solvation. The long-standing model for the hydrophobic factor (free energy change proportional to buried non-polar surface area) is contrasted with the packing-desolvation model and the approximate nature of the proportionality between free energy and apolar surface area is discussed. Recent energetic studies of forming peptide hydrogen bonds (gas phase) are reviewed together with studies of peptide solvation in solution. Closer agreement is achieved between the 1995 values for protein unfolding enthalpies in vacuum given by Lazaridis-Archontis-Karplus and Makhatadze-Privalov when the solvation enthalpy of the peptide group is taken from electrostatic calculations. Auxiliary factors in folding energetics include salt bridges and side-chain hydrogen bonds, disulfide bridges, and propensities to form alpha-helices and beta-structure. Backbone conformational entropy is a major energetic factor which is discussed only briefly for lack of knowledge.  相似文献   

7.
The disulfide bond between Cys14 and Cys38 of bovine pancreatic trypsin inhibitor lies on the surface of the inhibitor and forms part of the protease-binding region. The functional properties of three variants lacking this disulfide, with one or both of the Cys residues replaced with Ser, were examined, and X-ray crystal structures of the complexes with bovine trypsin were determined and refined to the 1.58-Å resolution limit. The crystal structure of the complex formed with the mutant with both Cys residues replaced was nearly identical with that of the complex containing the wild-type protein, with the Ser oxygen atoms positioned to replace the disulfide bond with a hydrogen bond. The two structures of the complexes with single replacements displayed small local perturbations with alternate conformations of the Ser side chains. Despite the absence of the disulfide bond, the crystallographic temperature factors show no evidence of increased flexibility in the complexes with the mutant inhibitors. All three of the variants were cleaved by trypsin more rapidly than the wild-type inhibitor, by as much as 10,000-fold, indicating that the covalent constraint normally imposed by the disulfide contributes to the remarkable resistance to hydrolysis displayed by the wild-type protein. The rates of hydrolysis display an unusual dependence on pH over the range of 3.5-8.0, decreasing at the more alkaline values, as compared with the increased hydrolysis rates for normal substrates under these conditions. These observations can be accounted for by a model for inhibition in which an acyl-enzyme intermediate forms at a significant rate but is rapidly converted back to the enzyme-inhibitor complex by nucleophilic attack by the newly created amino group. The model suggests that a lack of flexibility in the acyl-enzyme intermediate, rather than the enzyme-inhibitor complex, may be a key factor in the ability of bovine pancreatic trypsin inhibitor and similar inhibitors to resist hydrolysis.  相似文献   

8.
Bombyxin (bx) and prophenoloxidase-activating enzyme (ppae) signal peptides from Bombyx mori, their modified signal peptides, and synthetic signal peptides were investigated for the secretion of GFP(uv)-beta1,3-N-acetylglucosaminyltransferase 2 (GGT2) fusion protein in B. mori Bm5 cells and silkworm larvae using cysteine protease deficient B. mori multiple nucleopolyhedrovirus (BmMNPV-CP(-)) and its bacmid. The secretion efficiencies of all signal peptides were 15-30% in Bm5 cells and 24-30% in silkworm larvae, while that of the +16 signal peptide was 0% in Bm5 cells and 1% in silkworm larvae. The fusion protein that contained the +16 signal peptide was expressed specifically in the endoplasmic reticulum (ER) and in the fractions of cell precipitations. Ninety-four percent of total intracellular beta1,3-N-acetylglucosaminyltransferase (beta3GnT) activity was detected in cell precipitations following the 600, 8000, and 114,000g centrifugations. In the case of the +38 signal peptide, 60% of total intracellular activity was detected in the supernatant from the 114,000g spin, and only 1% was found in the precipitate. Our results suggest that the +16 signal peptide might be situated in the transmembrane region and not cleaved by signal peptidase in silkworm or B. mori cells. Therefore, the fusion protein connected to the +16 signal peptide stayed in the fat body of silkworm larvae with biological function, and was not secreted extracellularly.  相似文献   

9.
10.
The mechanisms of inhibition of two novel scFv antibody inhibitors of the serine protease MT-SP1/matriptase reveal the basis of their potency and specificity. Kinetic experiments characterize the inhibitors as extremely potent inhibitors with K(I) values in the low picomolar range that compete with substrate binding in the S1 site. Alanine scanning of the loops surrounding the protease active site provides a rationale for inhibitor specificity. Each antibody binds to a number of residues flanking the active site, forming a unique three-dimensional binding epitope. Interestingly, one inhibitor binds in the active site cleft in a substrate-like manner, can be processed by MT-SP1 at low pH, and is a standard mechanism inhibitor of the protease. The mechanisms of inhibition provide a rationale for the effectiveness of these inhibitors, and suggest that the development of specific antibody-based inhibitors against individual members of closely related enzyme families is feasible, and an effective way to develop tools to tease apart complex biological processes.  相似文献   

11.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   

12.
Anisomycin was identified in a screen of clinical compounds as a drug that kills breast cancer cells (MDA16 cells, derived from the triple negative breast cancer cell line, MDA-MB-468) that express high levels of an efflux pump, ABCB1. We show the MDA16 cells died by a caspase-independent mechanism, while MDA-MB-468 cells died by apoptosis. There was no correlation between cell death and either protein synthesis or JNK activation, which had previously been implicated in anisomycin-induced cell death. In addition, anisomycin analogues that did not inhibit protein synthesis or activate JNK retained the ability to induce cell death. These data suggest that either a ribosome-ANS complex is a death signal in the absence of JNK activation or ANS kills cells by binding to an as yet unidentified target.  相似文献   

13.
The primary structure and proteolytic processing of the alpha-amylase isoinhibitor alpha AI-1 from common bean (Phaseolus vulgaris cv. Magna) was determined by protein chemistry techniques. The inhibitory specificity of alphaAI-1 was screened with a panel of the digestive alpha-amylases from 30 species of insects, mites, gastropod, annelid worm, nematode and fungal phytopathogens with a focus on agricultural pests and important model species. This in vitro analysis showed a selective inhibition of alpha-amylases from three orders of insect (Coleoptera, Hymenoptera and Diptera) and an inhibition of alpha-amylases of the annelid worm. The inhibitory potential of alphaAI-1 against several alpha-amylases was found to be modulated by pH. To understand how alphaAI-1 discriminates among closely related alpha-amylases, the sequences of the alpha-amylases sensitive, respectively, insensitive to alphaAI-1 were compared, and the critical determinants were localized on the spatial alpha-amylase model. Based on the in vitro analysis of the inhibitory specificity of alphaAI-1, the in vivo activity of the ingested alphaAI-1 was demonstrated by suppression of the development of the insect larvae that expressed the sensitive digestive alpha-amylases. The first comprehensive mapping of alphaAI-1 specificity significantly broadens the spectrum of targets that can be regulated by alpha-amylase inhibitors of plant origin, and points to potential application of these protein insecticides in plant biotechnologies.  相似文献   

14.
15.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   

16.
It is widely accepted that PYP undergoes global structural changes during the formation of the biologically active intermediate PYP(M). High-angle solution x-ray scattering experiments were performed using PYP variants that lacked the N-terminal 6-, 15-, or 23-amino-acid residues (T6, T15, and T23, respectively) to clarify these structural changes. The scattering profile of the dark state of intact PYP exhibited two broad peaks in the high-angle region (0.3 A(-1) < Q < 0.8 A(-1)). The intensities and positions of the peaks were systematically changed as a result of the N-terminal truncations. These observations and the agreement between the observed scattering profiles and the calculated profiles based on the crystal structure confirm that the high-angle scattering profiles were caused by intramolecular interference and that the structure of the chromophore-binding domain was not affected by the N-terminal truncations. The profiles of the PYP(M) intermediates of the N-terminally truncated PYP variants were significantly different from the profiles of the dark states of these proteins, indicating that substantial conformational rearrangements occur within the chromophore-binding domain during the formation of PYP(M). By use of molecular fluctuation analysis, structural models of the chromophore-binding region of PYP(M) were constructed to reproduce the observed profile of T23. The structure obtained by averaging 51 potential models revealed the displacement of the loop connecting beta4 and beta5, and the deformation of the alpha4 helix. High-angle x-ray scattering with molecular fluctuation simulation allows us to derive the structural properties of the transient state of a protein in solution.  相似文献   

17.
The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ.  相似文献   

18.
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal “passenger domain” responsible for the specific effector functions of the molecule and a C-terminal “β-domain” responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-Å crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the β-helix within SPATEs.  相似文献   

19.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein.  相似文献   

20.
We have developed a phylogeny-based design method that has been used to produce mutated proteins with enhanced thermal stabilities. We previously validated the predictive worth of the method by producing and characterizing mutants in which one original residue or a small number of the original residues had been replaced with the one or the ones found in the phylogenetically predicted “ancestral” sequence. For the current study, this method was used to design a sequence for the deepest nodal position of a phylogenic tree composed of 16 gyrase B-subunit sequences, which was then synthesized and characterized. The sequence was inferred from the sequences of 16 extant DNA gyrases and 3 extant type VI DNA topoisomerases. Genes encoding the inferred sequence and its N-terminal ATPase domain were PCR constructed and expressed in Escherichia coli. The full-length designed protein is slightly less thermally stable than is subunit B from the extant thermophilic Thermus thermophilus DNA gyrase, whereas the thermal stability of the designed ATPase domain is more similar to that of the T. thermophilus ATPase domain. Moreover, the designed ATPase domain has significant catalytic activity. Therefore, even a small set of homologous amino acid sequences contains sufficient information to design a thermally stable and functional protein. Because the isolated designed ATPase domain is more thermally stable and catalytically active than is the sequence containing the most frequently occurring amino acids among the 16 gyrases, the phylogenetic approach was superior (in this case, at least) to the consensus approach when the same data set was used to predict the two sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号