首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

2.
Ultrastructural characters in spermiogenesis and spermatozoa are considered important tools to elucidate the phylogenetic relationships within the Platyhelminthes. In the Anoplocephalidae, ultrastructural data refer to the spermatozoon of 14 species, whereas data on spermiogenesis refer to only 7 species. The present study focused on the spermiogenesis and spermatozoon of the anoplocephalid cestode Mosgovoyia ctenoides, as revealed by transmission electron microscopy. Type IV spermiogenesis was detected, beginning with the formation of a differentiation zone containing 2 centrioles, with a centriolar adjunct and vestigial striated rootlets. Different forms of the latter character have been described in other anoplocephalids. This study supports spermiogenesis of type IV as the most frequent in the Anoplocephalidae and confirms the presence of a centriolar adjunct in yet another type IV spermiogenesis species. The spermatozoon of M. ctenoides possesses 1 axoneme of the 9+ '1' trepaxonematan type, 2 crestlike bodies, dense plates, and granules of electron-dense cytoplasmic material, nucleus, and twisted cortical microtubules. It was again confirmed that the presence of granular material and the absence of both a periaxonemal sheath and intracytoplasmic walls are constant characters in the spermatozoa of all the Anoplocephalinae.  相似文献   

3.
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 + “1” trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.  相似文献   

4.
This paper constitutes the first ultrastructural study of spermiogenesis and the spermatozoon of a cestode belonging to the family Mesocestoididae, Mesocestoides litteratus. Spermiogenesis in M. litteratus is characterised by a flagellar rotation and a proximodistal fusion. The zone of differentiation presents striated roots associated with the centrioles and also an intercentriolar body. The most interesting ultrastructural feature found in the mature spermatozoon of M. litteratus is the presence of parallel cortical microtubules. The spermatozoon also exhibits a single crest-like body and granules of glycogen. The pattern of spermiogenesis and the parallel position of cortical microtubules reveal the lack of concordance between M. litteratus and cyclophyllidean species studied to date in spermiogenesis and in the ultrastructural organisation of spermatozoon. This study provides new spermatological data and calls into question the validity of the current systematic position of mesocestoidids.  相似文献   

5.
Spermatogenesis and spermatozoon ultrastructure in the Nile electric catfish Malapterurus electricus are described using scanning and transmission electron microscopy. Although the testis organization conforms to the ‘unrestricted’ spermatogonial type, the species has a rare type of spermatogenesis not previously described among catfishes, ‘semicystic’, in which the cyst ruptures before the spermatozoon stage. Spermiogenesis also involves some peculiar features such as condensation of the chromatin in the posterior part of the nucleus to form a compact electron‐dense mass with some irregular electron‐lucent lacunae, while the uppermost part of the nucleus is a loose electron‐lucent area, absence of the nuclear rotation and, as a consequence, the centriolar complex and the initial segment of each flagellum arise directly in a position perpendicular to the basal pole of the nucleus, and occurrence of numerous vesicles in the midpiece. In addition, spermiogenesis includes migration of the diplosome and mitochondria to the basal pole of the nucleus, formation of two moderate nuclear fossae, each of which contains the centriolar complex, development of two independent flagella and elimination of the excess cytoplasm. The mature spermatozoon has a more or less round head with no acrosome or acrosomal vesicle, a long midpiece with numerous mitochondria and vesicles and two long tails or flagella having the classical axoneme structure of 9 + 2 microtubular doublet pattern and with no lateral fins and membranous compartment. These findings suggest that the ultrastructural features of spermiogenesis and spermatozoa of Melectricus are synapomorphies of types I and II spermiogenesis and spermiogenesis is closely similar to the type described in the Nile catfish Chrysichthys auratus.  相似文献   

6.
The present paper describes the ultrastructure of spermiogenesis and the spermatozoon of Macracanthorhynchus hirudinaceus, an acanthocephalan parasite of the wild boar Sus scrofa. At the beginning of spermatogenesis, spermatocytes exhibit synaptonemal complexes and 2 centrioles. In the spermatid, only 1 centriole remains, generating a flagellum with a 9+2 pattern. Another ultrastructural feature observed during the spermiogenesis of M. hirudinaceus is the condensation of the chromatin, forming a "honeycomb" structure in the old spermatid and a homogeneous, electron-dense structure in the spermatozoon. The mature spermatozoon of M. hirudinaceus presents a reversed anatomy, as has been described previously in other species of the Acanthocephala. The spermatozoon is divided into 2 parts: an axoneme, and a nucleocytoplasmic derivative. The spermatozoon flagellum exhibits a 9+2 or 9+0 pattern. The process of spermiogenesis and the ultrastructural organization of the spermatozoon of M. hirudinaceus are compared with available data regarding other acanthocephalan species.  相似文献   

7.
In this study we used transmission and scanning electron microscopy to examine the spermatozoan structure of Isognomon bicolor and Isognomon alatus. The spermatozoa of both species were of the primitive or ect-aquasperm type. The acrosomal morphologies were essentially similar but the top of the acrosomal vesicle in I. bicolor sperm had a slightly flattened edge whereas the apex of the acrosomal vesicle of I. alatus sperm had a rounded outline. This difference suggested that acrosomal morphology could be an important character for taxonomic differentiation. In the present work, the results demonstrated that the gamete ultrastructure of the two distinct species I. alatus, from Panama, and I. bicolor, from the southeastern region of Brazil, were similar to the other studied species of the superfamily Pterioidea.  相似文献   

8.
Among species of the Chiroptera, spermatogenesis and the fully differentiated spermatozoa differ in morphological and ultrastructural detail. This study therefore aimed to ultrastructurally characterize the spermatogenesis and the spermatozoa of Carollia perspicillata (Phyllostomidae) and compare the process with other species of bats and mammals. The differentiation of spermatogonia is similar to other bats and to Primates, with three main spermatogonia types: Ad, Ap, and B. Meiotic divisions proceed similarly to those of most mammals and spermiogenesis is clearly divided into 12 steps, in the middle of the range of developmental steps for bats (9–16 steps). The process of acrosome formation is similar to that found in Platyrrhinus lineatus, with the acrosome formed by two different types of proacrosomal vesicles. The ultrastructure of the spermatozoon is similar to other bats already described and resembles the typical mammalian sperm model; however, its morphology differs from other mammals such as marsupials and rodents, on account of a simpler spermatozoon head morphology, which indicates a pattern that is more closely related to the sperm cells of humans and other primates. Our data demonstrated that spermatogenesis in C. perspicillata presents great ultrastructural similarities to P. lineatus. This pattern is not surprising, because both species belong to the same family (Phyllostomidae); however, it is observed that C. perspicillata presents some characteristics that are more closely related to phylogenetically distant species, such as Myotis nigricans (Vespertilionidae), which is a fact that deserves attention. J. Morphol. 275:111–123, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Yoneva, A., Georgieva, K., Mizinska, Y., Nikolov, P. N., Georgiev, B. B. and Stoitsova, S. R. 2010. Ultrastructure of spermiogenesis and mature spermatozoon of Anonchotaenia globata (von Linstow, 1879) (Cestoda, Cyclophyllidea, Paruterinidae). — Acta Zoologica (Stockholm) 91 : 184–192 The ultrastructure of spermiogenesis and of the spermatozoon of a species of the family Paruterinidae is described for the first time. The spermiogenesis of Anonchotaenia globata starts with the formation of a differentiation zone with two centrioles associated with thin striated roots. One of the centrioles gives rise to a free flagellum followed by a slight flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic protrusion. This pattern corresponds to Type III spermiogenesis in cestodes. The spermatozoon consists of five distinct regions. The anterior extremity possesses an apical cone and a single helically coiled crested body. The cortical microtubules are spirally arranged. The axoneme is surrounded by a periaxonemal sheath and a thin layer of cytoplasm filled with electron‐dense granules in Regions I–V. The periaxonemal sheath is connected with the peripheral microtubules by transverse intracytoplasmic walls in Regions III and IV. The nucleus is spirally coiled around the axoneme. Anonchotaenia globata differs from Dilepididae (where paruterinids have previously been classified) in the type of spermiogenesis, the lack of glycogen inclusions and the presence of intracytoplasmic walls. The pattern of spermiogenesis is similar to that in Metadilepididae and Taeniidae, which are considered phylogenetically close to Paruterinidae.  相似文献   

10.
Electron microscopy of the testes of the free-living flatworm Mesocastrada fuhrmanni collected from temporary freshwater ponds shows stages of spermiogenesis that are like other species of the Typhloplanidae. Spermiogenesis in Mesocastrada fuhrmanni is characterized by the presence, in the spermatid, of a differentiation zone underlain by peripheral microtubules and centered on two centrioles with an intercentriolar body. Two flagella of the 9+“1” pattern of the Trepaxonemata grow out in opposite directions from the centrioles. The flagella undergo a latero-ventral rotation, and a subsequent disto-proximal rotation of centrioles occurs in the spermatid. The former rotation involves the compression and the detachment of a row of cortical microtubules, and allows us to recognize a ventral from a dorsal side. Two features are of special interest at the end of differentiation: peripheral cortical microtubules lie parallel to the sperm axis near the anterior tip, but microtubules become twisted (about 40° with reference to the gamete axis) near the posterior extremity; in the same way, the posterior tip of the nucleus is spiralled. As far as we know, these features are observed for the first time in the Typhloplanidae. The pattern of spermiogenesis and the ultrastructural organization of the spermatozoon are compared with the available data on Typhloplanoida and in particular, species of the Typhloplanidae family.  相似文献   

11.
The spermatozoon of the Carib grackle, Quiscalus lugubris, a member of the family Icteridae, is generally similar in organization to the passerine-type of spermatozoon, in being highly elongated and displaying a helical structure of the acrosome, nucleus and principal piece of the tail. There are subtle variations in acrosomal structural features between this organelle in the grackle and that in some of the very few passerine species of birds in which the spermatozoon has been studied. The proximal centriole is present, and, thus, the Carib grackle is the third passeridan bird in which this organelle, hitherto regarded as absent in passerine birds, has been described in the spermatozoon. The spermatozoon of this bird also possesses a granular helix, which feature has been found variably even in the scanty available reports on passerine spermatozoa. It is advocated that the spermatozoon be studied in many more species of this large clade of birds. This report provides a basis for the study of spermiogenesis in the Carib grackle, with the aim of exposing, inter alia, a number of developmental features and processes of certain organelles that have received attention, recently, in the spermatozoa of passerine birds.  相似文献   

12.
The Mesometridae includes only five genera and eight species. The available data on the ultrastructure of sperm cells of mesometrid species referred to two species only, Elstia stossichianum and Wardula capitellata. The present study revealed the ultrastructure of the spermatozoon of a third genus and third species of Mesometridae, Centroderma spinosissima. The mature spermatozoon of C. spinosissima presents two axonemes with different lengths of the Ehlers’ 9 + ‘1’ trepaxonematan pattern, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, a lateral expansion, spine-like bodies, cytoplasmic ornamented buttons and granules of glycogen. The spermatozoon of C. spinosissima is similar to those of the previously studied mesometrids. However, some peculiarities such as the presence of two mitochondria, the disposition of the external ornamentation of the plasma membrane and the morphology of the posterior spermatozoon extremity, characterize the male gamete of C. spinosissima. Moreover, the presence of cytoplasmic ornamented buttons is a characteristic found only in the mature spermatozoon of mesometrids and it probably represents an autapomorphy for this family.  相似文献   

13.
The ultrastructure of the mature spermatozoon of the type genus of the Plagiorchiidae Plagiorchis elegans (Rudolphi, 1802), a parasite of the Golden hamster, Mesocricetus auratus is described. This study is the first ultrastructural study of the spermatozoon of a Plagiorchis, the second of a plagiorchiid species and only the third in the Plagiorchioidea. Previously data on spermatozoon ultrastructure existed only for the plagiorchiid Enodiotrema reductum and the omphalometrid Rubenstrema exasperatum. The mature spermatozoon of P. elegans exhibited the general pattern described in most digenean species, namely two axonemes of the 9 + “1” Trepaxonemata pattern, nucleus, mitochondria, external ornamentation of the plasma membrane, spine‐like bodies, and glycogen granules. However, the rather typical expansion of the plasma membrane is not found in P. elegans. Another peculiarity of the spermatozoon of P. elegans is the presence of a structure called thin cytoplasm termination. Spermatozoon ultrastructure of P. elegans is compared with that of E. reductum and R. exasperatum. Spermatozoon of P. elegans conforms to the general pattern described in E. reductum. Thus, this study further expands our knowledge on the spermatozoon ultrastructure among the members of the Plagiorchioidea, one of the most phylogenetically derived groups of the digenea. J. Morphol. 274:965–972, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

15.
16.
Using transmission electron microscopy, spermiogenesis and the spermatozoon ultrastructural organization are described in Ligula intestinalis (Linnaeus, 1758) (Diphyllobothriidea), a parasite of the great crested grebe Podiceps cristatus (Linnaeus, 1758). Spermiogenesis starts with the differentiation zone of 2 striated rootlets, 2 centrioles giving rise to 2 flagella, and an intercentriolar body. The latter is composed of 5 electron-dense layers separating 4 electron-lucent layers. In the early stages of spermiogenesis, an electron-dense material is present in the apical region of the differentiation zone. Later, the flagella undergo a rotation and fuse with the cytoplasmic extension in a proximo-distal process. The spermatozoon contains 2 axonemes with a 9 + "1" trepaxonematan pattern, the nucleus, the cortical microtubules, and an electron-dense zone. The spermatozoon anterior extremity in L. intestinalis is characterized by the absence of crested bodies and a ring of electron-dense cortical microtubules. Some characters of spermiogenesis and spermatozoon in L. intestinalis confirm the recent splitting of "Pseudophyllidea" into 2 new orders, i.e., Bothriocephalidea and Diphyllobothriidea. The process of spermiogenesis is similar in both orders for the "type I" of spermiogenesis and the presence of electron-dense material. However, the intercentriolar body is clearly more developed in the Diphyllobothriidea than in the Bothriocephalidea. Moreover, these 2 orders seem to differ in the presence or absence of a ring of electron-dense cortical microtubules in the anterior extremity of the spermatozoon.  相似文献   

17.

Background

The Chinese mitten crab Eriocheir sinensis belongs to the Class Crustacea, Decapoda, Brachyura. The spermatozoon of this species is of aflagellated type, it has a spherical acrosome surrounded by the cup-shaped nucleus, which are unique to brachyurans. For the past several decades, studies on the spermatogenesis of the mitten crab mainly focus on the morphology. Compared with the extensive study of molecular mechanism of spermatogenesis in mammals, relatively less information is available in crustacean species. Myosin Va, a member of Class V myosin, has been implicated in acrosome biogenesis and vesicle transport during spermatogenesis in mammals. In the present study we demonstrate the expression and cellular localization of myosin Va during spermatogenesis in E. sinensis.

Methodology/Principal Findings

Western blot demonstrated that myosin Va is expressed during spermatogenesis. Immunocytochemical and ultrastructural analyses showed that myosin Va mainly localizes in the cytoplasm in spermatocytes. At the early stage of spermiogenesis, myosin Va binds to the endoplasmic reticulum vesicle (EV) and proacrosomal granule (PG). Subsequently, myosin Va localizes within the proacrosomal vesicle (PV) formed by PG and EV fusion and locates in the membrane complex (MC) at the mid spermatid stage. At the late spermatid stage, myosin Va is associated with the shaping nucleus and mitochondria. In mature spermatozoon, myosin Va predominates in acrosomal tubule (AT) and nucleus.

Conclusions/Significance

Our study demonstrates that myosin Va may be involved in acrosome biogenesis and nuclear morphogenesis during spermatogenesis in E. sinensis. Considering the distribution and molecular characteristics of myosin Va, we also propose a hypothesis of AT formation in this species. It is the first time to uncover the role of myosin Va in crustacean spermatogenesis.  相似文献   

18.
BackgroundKnowledge of spermiogenesis in reptiles, especially in lizards, is very limited. Lizards found in Arabian deserts have not been considered for detailed studies due to many reasons and the paucity of these animals. Therefore, we designed a study on the differentiation and morphogenesis of spermiogenesis, at an ultrastructural level, in a rare lizard species, Scincus scincus.ResultsThe spermiogenesis process includes the development of an acrosomal vesicle, aggregation of acrosomal granules, formation of subacrosomal nuclear space, and nuclear elongation. A role for manchette microtubules was described in nuclear shaping and organelle movement. During head differentiation, the fine granular chromatin of the early spermatid is gradually replaced by highly condensed contents in a process called chromatin condensation. Furthermore, ultrastructural features of sperm tail differentiation in S. scincus were described in detail. The commencement was with caudal migration toward centrioles, insertion of the proximal centriole in the nuclear fossa, and extension of the distal centrioles to form the microtubular axoneme. Subsequently, tail differentiation consists of the enlargement of neck portion, middle piece, the main and end pieces.ConclusionsThis study aids in the understanding of different aspects of spermiogenesis in the lizard family and unfurls evolutionary links within and outside reptiles.  相似文献   

19.
The mature spermatozoon of Cricocephalus albus is filiform, tapered at both ends and shows the following features: 2 axonemes of different lengths presenting the 9 + “1” trepaxonematan pattern, 2 bundles of parallel cortical microtubules, a mitochondrion and a nucleus. Nevertheless, the particularity of the spermatozoon of C. albus is its anterior extremity with an apical electron-dense material associated with extramembranar ornamentation, a cytoplasmic dorsolateral expansion and spine-like bodies. To our knowledge, such an anterior extremity of the spermatozoon has not previously been described from a species of the superfamily Pronocephaloidea. Our study provides new data on the mature gamete of C. albus in order to improve our understanding of the pronocephaloidean phylogenetic relationships.  相似文献   

20.
The ultrastructural organization of the spermatozoon of a cryptogonimid digenean, Aphallus tubarium, a parasite of Dentex dentex, is described. The spermatozoon possesses the elements found in other digeneans: two axonemes with 9 + “1” pattern, a mitochondrion, a nucleus, cortical microtubules, external ornamentation and spine-like bodies. However, the mitochondrion appears as a cord with a bulge; this characteristic has never been described in other studied cryptogonimid and in other digeneans except in one lepocreadiid, Holorchis micracanthum. Likewise, the presence of a thin cytoplasm termination in the anterior part of the spermatozoon has never been pointed out in the cryptogonimids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号