首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model for control by repression by an extracellular substance is developed, including diffusion and time delays. The model examines how active transport of a nutrient can produce either oscillatory or stable responses depending on a variety of parameters, such as diffusivity, cell size, or nutrient concentration. The system of equations for the mathematical model is reduced to a system of delay differential equations and linear Volterra equations. After linearizing these equations and forming the limiting Volterra equations, the resulting linear system no longer has any spatial dependence. Local stability analysis of the radially symmetric model shows that the system of equations can undergo Hopf bifurcations for certain parameter values, while other ranges of the parameters guarantee asymptotic stability. One numerical study shows that the model can exhibit intracellular biochemical oscillations with increasing extracellular concentrations of the nutrient, which suggests a possible trigger mechanism for morphogenesis.The work of this author was supported in part by NSF grants DMS-8603787 and DMS-8807360The work of this author was supported under the REU program of NSF by grant DMS-8807360The work of this author was supported under the REU program of NSF by grant DMS-8807360  相似文献   

2.
3.
This paper aims at the general mathematical framework for the equilibrium theory of two-component lipid bilayer vesicles. To take into account the influences of the local compositions together with the mean curvature and Gaussian curvature of the membrane surface, a general potential functional is constructed. We introduce two kinds of virtual displacement modes: the normal one and the tangential one. By minimizing the potential functional, the equilibrium differential equations and the boundary conditions of two-component lipid vesicles are derived. Additionally, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are presented. The physical, mathematical, and biological meanings of the equilibrium differential equations and the geometrical constraint equations are discussed. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. Numerical results can be used to explain recent experiments.  相似文献   

4.
研究了在周期变化环境中具有扩散及种群密度可能发生突变的两竞争种群动力系统的数学模型.模型由反应扩散方程组以及初边值及脉冲条件组成.文章建立了研究模型的上下解方法,获得了一些比较原理.利用脉冲常微分方程的比较定理以及利用相应的脉冲常微分方程的解控制和估计所讨论模型的解,研究了系统模型的解的渐近性质.  相似文献   

5.
The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.  相似文献   

6.
Genistein is an endocrine-active compound (EAC) found in soy products. It has been linked to beneficial effects such as mammary tumor growth suppression and adverse endocrine-related effects such as reduced birth weight in rats and humans. In its conjugated form, genistein is excreted in the bile, which is a significant factor in its pharmacokinetics. Experimental data suggest that genistein induces a concentration-dependent suppression of biliary excretion. In this article, we describe a physiologically based pharmacokinetic (PBPK) model that focuses on biliary excretion with the goal of accurately simulating the observed suppression. The mathematical model is a system of nonlinear differential equations with state-dependent delay to describe biliary excretion. The model was analyzed to examine local existence and uniqueness of a solution to the equations. Furthermore, unknown parameters were estimated, and the mathematical model was compared against published experimental data. This research was supported by the American Chemistry Council (formerly the Chemical Manufacturers Association, CMA Agreement Reference Number 9121).  相似文献   

7.
A wide range of biophysical systems are described by nonlinear dynamic models mathematically presented as a set of ordinary differential equations in the Cauchy explicit form: [formula: see text] Fij(X1(t),..,XN(t),t), (i = 1,...,N, j = 1,...,M), where Fij (X1(t), ..., XN(t), t) is a set of basis functions satisfying the Lipschitz condition. We investigate the problem of evaluation of model constants aij (the system identification) using experimental data about the time dependence of the dynamic parameters of the system Xi(t). A new method of system identification for the class of similar nonlinear dynamic models is proposed. It is shown that the problem of identifying an initial nonlinear model can be reduced to the solution of a system of linear equations for the matrix of the dynamic model constants [aj]i. It is proposed to determine the set of dynamic model constants aij using the criterion of minimal quadratic discrepancy for the time dependence of the set of dynamic parameters Xi(t). An important special case of the nonlinear model, the quadratic model, is considered. Test problems of identification using this method are presented for two nonlinear systems: the Van der Pol type multiparametric nonlinear oscillator and the strange attractor of Ressler, a widely known example of dynamic systems showing the stochastic behavior.  相似文献   

8.
A population growth model is considered for a one locus two allele problem with selection based entirely on fertility differences. A local stability analysis is carried out for the critical points — which include possible polymorphic states — of the resulting nonlinear differential equations. The methods of dynamical systems theory are applied to obtain limiting genotypic proportions for every initial state. Thus the results are global and there are no periodic solutions.Research for this paper was partially supported by the National Science and Engineering Research Council of Canada Grant NSERC A-8130Research for this paper was partially supported by the National Science and Engineering Research Council of Canada Grant NSERC A-4823Research supported by NSF Grant MCS 7901069. A portion of the work was carried out while the author was a Visiting Professor at the University of Utah, Salt Lake City, Utah  相似文献   

9.
A syncytium model to study some electrical properties of the eye is proposed to study the phenomenon of anomalous light flashes (LF) perceived by astronauts in orbit. The crystalline lens is modelled as an ellipsoidal syncytium with a variable relative dielectric constant. The corresponding mathematical model is a boundary value problem for a system of two coupled elliptic partial differential equations in the two unknown syncytial electrical potentials. A numerical method to compute an approximate solution of this mathematical model is used, and some numerical results are shown. The model can be regarded as a new tool to study the LF phenomenon. In particular, the energy lost in the syncytium by a transversing cosmic charged particle is calculated and the results obtained with the syncytium model are compared with those obtained using the previously available Geant 3.21 simulation program. In addition, the interaction of antimatter–syncytium is studied, and the Creme96 computer program is used to evaluate the cosmic ray fluxes encountered by the International Space Station in its standard mission.  相似文献   

10.
A mathematical model of energy metabolism of human red cells is presented, which includes besides the glycolytic reactions the adenine nucleotide metabolism. The model is based on the network of chemical reactions, the thermodynamic equilibrium constants of fast reversible reactions and on the kinetic equations for irreversible enzyme reactions. The model consists of a system of 16 differential equations and allows the mathematical evaluation of metabolic levels in the steady state of energy metabolism corresponding to the in vivo state erythrocytes with the kinetic data for the enzymes derived from in vitro experiments. The dependence of the levels of metabolites in the steady state on the activity of some enzymes is analysed to characterize the regulatory properties of the system. The comparison of the steady state levels of the model with experimental data makes it possible to estimate values of some controversial enzyme parameters. Estimates of the kinetic parameters of the following intracellular processes are presented: 1) rate constant of AMP-phosphatase, 2) maximum rate of adenylate deaminase, 3) activity of adenine phosphoribosylpyrophosphate transferase and 4) adenosine transport through the cell membrane. The simulation of the preparatory phase before incubation of erythrocytes indicates, that the model also permits to compute the time course of changes of levels of metabolites. To solve the initial problem the stiff differential equation system is integrated numerically by an efficient program without the application of the quasi-steady-state approximation.  相似文献   

11.
We consider distributed parameter identification problems for the FitzHugh–Nagumo model of electrocardiology. The model describes the evolution of electrical potentials in heart tissues. The mathematical problem is to reconstruct physical parameters of the system through partial knowledge of its solutions on the boundary of the domain. We present a parallel algorithm of Newton–Krylov type that combines Newton’s method for numerical optimization with Krylov subspace solvers for the resulting Karush–Kuhn–Tucker system. We show by numerical simulations that parameter reconstruction can be performed from measurements taken on the boundary of the domain only. We discuss the effects of various model parameters on the quality of reconstructions. Action Editor: David Terman  相似文献   

12.
Neurotransmitters in the terminal bouton of a presynaptic neuron are stored in vesicles, which diffuse in the cytoplasm and, after a stimulation signal is received, fuse with the membrane and release its contents into the synaptic cleft. It is commonly assumed that vesicles belong to three pools whose content is gradually exploited during the stimulation. This article presents a model that relies on the assumption that the release ability is associated with the vesicle location in the bouton. As a modeling tool, partial differential equations are chosen as they allow one to express the continuous dependence of the unknown vesicle concentration on both the time and space variables. The model represents the synthesis, concentration-gradient-driven diffusion, and accumulation of vesicles as well as the release of neuroactive substances into the cleft. An initial and boundary value problem is numerically solved using the finite element method (FEM) and the simulation results are presented and discussed. Simulations were run for various assumptions concerning the parameters that govern the synthesis and diffusion processes. The obtained results are shown to be consistent with those obtained for a compartment model based on ordinary differential equations. Such studies can be helpful in gaining a deeper understanding of synaptic processes including physiological pathologies. Furthermore, such mathematical models can be useful for estimating the biological parameters that are included in a model and are hard or impossible to measure directly.  相似文献   

13.
A mathematical model of iron metabolism is presented. It comprises the following iron pools within the body: transferrin-bound iron in the plasma, iron in circulating red cells and their bone marrow precursors, iron in mucosal, parenchymal and reticuloendothelial cells. The control exerted by a hormone, called erythropoietin, on bone marrow utilization of iron for hemoglobin synthesis is taken into account. The model so obtained consists of a system of functional differential equations of retarded type. Most model parameters can be estimated from radiotracer experiments, others can be measured and numerical values can be assigned to the remaining ones making few reasonable assumptions according to the available physiological knowledge. Iron metabolism behavior under different therapeutical treatments was simulated. Model predictions were compared to experimental data collected in clinical routine.This work has been partially supported by C.N.R. (Italy) through grants N. 80.01227.07 and N. 81.00888.07  相似文献   

14.
MOTIVATION: Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. RESULTS: We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.  相似文献   

15.
Two-dimensional hydromagnetic flow of an incompressible Jeffrey nanofluid over an exponentially stretching surface is examined in the present article. Heat and mass transfer analysis is performed in the presence of thermal radiation, viscous dissipation, and Brownian motion and thermophoresis effects. Mathematical modelling of considered flow problem is developed under boundary layer and Rosseland’s approximations. The governing nonlinear partial differential equations are converted into ordinary differential equations via transformations. Solution expressions of velocity, temperature and concentration are presented in the series forms. Impacts of physical parameters on the dimensionless temperature and concentration are shown and discussed. Skin-friction coefficients are analyzed numerically. A comparison in a limiting sense is provided to validate the present series solutions.  相似文献   

16.
We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.  相似文献   

17.
Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.  相似文献   

18.
A novel mathematical model of the actin dynamics in living cells under steady-state conditions has been developed for fluorescence recovery after photobleaching (FRAP) experiments. As opposed to other FRAP fitting models, which use the average lifetime of actins in filaments and the actin turnover rate as fitting parameters, our model operates with unbiased actin association/dissociation rate constants and accounts for the filament length. The mathematical formalism is based on a system of stochastic differential equations. The derived equations were validated on synthetic theoretical data generated by a stochastic simulation algorithm adapted for the simulation of FRAP experiments. Consistent with experimental findings, the results of this work showed that (1) fluorescence recovery is a function of the average filament length, (2) the F-actin turnover and the FRAP are accelerated in the presence of actin nucleating proteins, (3) the FRAP curves may exhibit both a linear and non-linear behaviour depending on the parameters of actin polymerisation, and (4) our model resulted in more accurate parameter estimations of actin dynamics as compared with other FRAP fitting models. Additionally, we provide a computational tool that integrates the model and that can be used for interpretation of FRAP data on actin cytoskeleton.  相似文献   

19.
Hormonal therapy with androgen suppression is a common treatment for advanced prostate tumors. The emergence of androgen-independent cells, however, leads to a tumor relapse under a condition of long-term androgen deprivation. Clinical trials suggest that intermittent androgen suppression (IAS) with alternating on- and off-treatment periods can delay the relapse when compared with continuous androgen suppression (CAS). In this paper, we propose a mathematical model for prostate tumor growth under IAS therapy. The model elucidates initial hormone sensitivity, an eventual relapse of a tumor under CAS therapy, and a delay of a relapse under IAS therapy, which are due to the coexistence of androgen-dependent cells, androgen-independent cells resulting from reversible changes by adaptation, and androgen-independent cells resulting from irreversible changes by genetic mutations. The model is formulated as a free boundary problem of partial differential equations that describe the evolution of populations of the abovementioned three types of cells during on-treatment periods and off-treatment periods. Moreover, the model can be transformed into a piecewise linear ordinary differential equation model by introducing three new volume variables, and the study of the resulting model may help to devise optimal IAS schedules.  相似文献   

20.
In this paper we study a method for the identification of the unknown parameter of the periodic function and also the first component of the state vector, in a mathematical model which describes the evolution of some diseases with an oro-fecal transmission.To solve the identification problem we use a numerical method to integrate the differential equations system, which reproduces the stability properties of the above mentioned continuous system.The numerical methods which we propose can be applied also to a spatial semi discretization of the reaction-diffusion model which is a diffusive generalization of the system that we consider in this paper.Finally, through an analysis on both the continuous and the discrete system we also obtain a necessary condition on the experimental data in order that a periodic trajectory of the system exists.Work supported by: Progetto Finalizzato Controllo Malattie da Infezione-CNR and by Ministero Pubblica Istruzione  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号