首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of intravenous or intraventricular injection of synthetic ovine corticotrophin-releasing factor (oCRF) on plasma levels of anterior pituitary hormones were studied in conscious, ovariectomized (OVX) female rats and compared with the actions of the peptide on dispersed anterior pituitary cells from OVX female rats incubated in the presence of CRF. Third ventricular injection of oCRF in freely moving rats caused a significant increase in plasma levels of ACTH in a dose-related manner with a minimal effective dose of less than 0.5 micrograms (0.1 nmol). The effect was observable at 5 min after injection and persisted for the 60 min duration of the experiment. In contrast, growth hormone levels were significantly depressed within 15 min with a minimal effective intraventricular dose of 0.5 micrograms. The suppression persisted for the duration of the experiment but there was no additional effect of the higher dose of 5 micrograms. Plasma LH levels were also lowered by the highest dose of 5 micrograms (1.0 nmol) of oCRF, with the first significant lowering at 30 min. Lower doses had no effect on plasma LH. Plasma TSH levels were not significantly altered. Control injections of the 0.9% NaCl diluent were without effect on the levels of any of the hormones. Intravenous injection of similar doses of oCRF had no effect on plasma levels of GH or LH. The ACTH-releasing action of the oCRF preparation was confirmed by in vitro incubation of the peptide with dispersed anterior pituitary cells for 2 h. A dose-related release of ACTH occurred in doses ranging from 0.1-10 nM, but there were no effects on the release of the other anterior pituitary hormones. The results suggest that oCRF may act within the hypothalamus to suppress the release of GH and to a lesser extent LH. The stimulation of ACTH release following intraventricular CRF is presumably related to its uptake by portal blood vessels with delivery to the pituitary and stimulation of the corticotrophs.  相似文献   

2.
The influence of corticosteroids and progesterone upon porcine testicular testosterone production was investigated by administration of exogenous adrenocorticotropic hormone (ACTH), cortisol and progesterone, and by applying a specific stressor. Synthetic ACTH (10 micrograms/kg BW) increased (P less than 0.01) peripheral concentrations of testosterone to peak levels of 5.58 +/- 0.74 ng/ml by 90 min but had no effect upon levels of luteinizing hormone (LH). Concentrations of corticosteroids and progesterone also increased (P less than 0.01) to peak levels of 162.26 +/- 25.61 and 8.49 +/- 1.00 ng/ml by 135 and 90 min, respectively. Exogenous cortisol (1.5 mg X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although peripheral concentrations of corticosteroids were elevated (P less than 0.01) to peak levels of 263.57 +/- 35.03 ng/ml by 10 min after first injection. Exogenous progesterone (50 micrograms X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although concentrations of progesterone were elevated (P less than 0.01) to peak levels of 17.17 +/- 1.5 ng/ml by 15 min after first injection. Application of an acute stressor for 5 min increased (P less than 0.05) concentrations of corticosteroids and progesterone to peak levels of 121.32 +/- 12.63 and 1.87 +/- 0.29 ng/ml by 10 and 15 min, respectively. However, concentrations of testosterone were not significantly affected (P greater than 0.10). These results indicate that the increase in testicular testosterone production which occurs in boars following ACTH administration is not mediated by either cortisol or progesterone.  相似文献   

3.
E Ortega  J Frias  E Rodriguez  E Ruiz 《Life sciences》1988,43(17):1349-1354
The intracerebroventricular (ICV) injection of ACTH (1-24) (0.1, 1.0 and 2.5 micrograms) to adult conscious ovariectomized (OVX) rats caused a dose-related inhibition of plasma LH at 10 min postinjection. The ICV injection of ACTH (1-24) (2.5 micrograms) to OVX rats in the absence or presence of a single dose of estradiol benzoate (OVX + EB): a) Decreased significantly plasma LH levels in OVX rats at 10 and 30 min postinjection. b) Decreased significantly plasma LH levels in (OVX + EB) rats at 10 min but not at 30 min postinjection. c) Did not change plasma FSH levels at 10 or 30 min postinjection in both (OVX) or (OVX + EB) rats. d) Did not change plasma ACTH levels at 10 or 30 min postinjection in (OVX) rats. Our observation suggest that ACTH (1-24) inhibited plasma LH, possibly through brain sites of action.  相似文献   

4.
German Landrace piglets, 6-7 days of age, received either saline (9 males, 8 females), 0.5 mg naloxone/kg body weight (7 males, 7 females), 2.0 mg naloxone/kg (7 males, 8 females) or 0.5 mg DADLE (potent leu-enkephalin analog)/kg (7 males, 7 females) through a catheter inserted into the jugular vein 2-4 days previously. Male or female piglets were allocated randomly, within litter, to the different experimental groups. Blood samples were withdrawn for a period of 240 min at 10-min intervals for the first 60 min following injection and at 20-min intervals for the rest of the test period. Piglets were separated from their mother via a detachable wall and were allowed to suckle every 50 min. DADLE failed to alter plasma levels of LH in both males and females. Naloxone induced a significant (P less than 0.01) decrease in LH concentrations in females 10 to 60 min after injection (saline: 2.3 +/- 0.2 ng/ml plasma (SEM); 0.5 mg naloxone/kg: 1.0 +/- 0.2 ng/ml plasma and 2 mg naloxone/kg 1.2 +/- 0.4 ng/ml plasma). In males low doses of naloxone reduced plasma LH levels 10 to 40 min after injection (saline: 2.0 +/- 0.3 ng/ml plasma and 0.5 ng naloxone/kg: 1.1 +/- 0.3 ng/ml), whereas a decrease in plasma LH levels occurred 80 to 140 min after injection of high doses of naloxone (saline: 2.1 +/- 0.2 ng/ml and 2 mg naloxone/kg: 1.0 +/- 0.2 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The adrenocortical secretory activity under basal conditions and after treatment with tetracosactid (1-24ACTH) has been investigated in chronically cannulated male rabbits. Basal plasma concentrations of glucocorticosteroids (0.74 micrograms/100 ml) and aldosterone (78 pg/ml) have been determined in a greater number of animals. No significant positive correlation between basal glucocorticosteroid and aldosterone plasma levels could be found. After intravenous injection of 2.5, 5.0, 10.0 and 20.0 micrograms/kg body weight tetracosactid glucocorticosteroid concentrations were significantly elevated between 40--100 min after administration; aldosterone release, on the other hand, was significantly increased only after injection of 10.0 or 20.0 micrograms/kg body weight tetracosactid between 20--60 min after injection. After administration of high tetracosactid doses glucocorticosteroid and aldosterone plasma concentrations were significantly correlated (10.0 micrograms/kg: r = 0.62; 20.0 micrograms/kg: r = 0.26). Because of the relative insensitivity of the zona glomerulosa cells to tetracosactid administered intravenously, it is concluded that ACTH is only of minor importance in the regulation of aldosterone secretion in the rabbit.  相似文献   

6.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

7.
A Ottlecz  S M McCann 《Life sciences》1988,43(25):2077-2085
Prostacyclin (PGI2) or its stable metabolite, 6-keto-PGF1 alpha (1-5 micrograms) in 2.5 microliter 0.05 M phosphate buffer (pH 7.4), was injected into the third ventricle (3 V) of ovariectomized (OVX), freely moving rats. Control animals received 2.5 microliter of buffer. In the initial experiments a control blood sample was taken and then the PGI2 was injected and frequent samples taken thereafter. With this protocol injection of 2 micrograms of PGI2 produced a significant decrease in mean plasma LH only at 60 min after its injection (p less than .05), while the higher dose (5 micrograms) decreased plasma LH concentrations at 30 and 60 min (p less than .01 and p less than .001, respectively). In subsequent experiments, blood was removed from indwelling external jugular vein cannulae every 5-6 min during 2 hours and plasma LH and PRL levels were determined by radioimmunoassay. LH pulses were monitored and several parameters of LH pulsation were calculated during the hour before and after injection of phosphate buffer, PGI2 or 6-keto-PGF1 alpha. Intraventricular injection of phosphate buffer failed to modify the characteristic pulsatile release of LH and did not alter plasma PRL levels. The amplitude of LH pulses was significantly reduced by PGI2 and the inhibitory effect was dose-related. Even a dose of 1 microgram produced a significant reduction in pulse height and the response was graded with maximal reduction occurring with the 5 microgram dose which essentially abolished the LH pulses. Following the microinjection of 6-keto-PGF1 alpha, no significant changes were observed in plasma LH values and the pulses of the hormone. Five micrograms PGI2 considerably elevated plasma PRL values during the 20-25 min following its 3V injection, whereas the same dose of 6-keto-PGF1 alpha produced only a very slight stimulatory effect. Since PGI2 had no effect to alter LH release by cultured pituitary cells in vitro, it is concluded that PGI2 can act on structures near the 3V to inhibit pulsatile release of LHRH.  相似文献   

8.
The aim of the current experiment was to study the regulation of follicle development in the pig using a potent GnRH agonist (GnRH-A) to initially suppress follicle development. Large-White hybrid gilts (n = 8) were treated during the luteal phase with GnRH-A. Four of these GnRH-A treated gilts and four control gilts were given a GnRH bolus on days 14 and 28 after GnRH-A administration or during the luteal phase in control gilts. Blood samples were collected for 10 h for FSH and LH, after which 1500 IU PMSG were administered and the ovaries and uteri recovered 72 h later. A further four GnRH-A treated gilts and four control gilts were slaughtered either 28 days after GnRH-A administration or during the luteal phase respectively, and all follicles > or = 1 mm diameter were dissected. The mean basal plasma FSH level was lower (P < 0.01) in GnRH-A treated than control gilts and showed no response to the GnRH challenge although levels increased (P < 0.01) in control gilts. The mean basal plasma LH levels were similar (P > 0.1) in GnRH-A treated and control gilts. Whilst in GnRH-A treated gilts plasma LH levels showed no response to the GnRH challenge, plasma LH levels were increased (P < 0.01) in control gilts. Pulsatile LH secretion was abolished in GnRH-A treated but not in control gilts. Plasma oestradiol levels were lower (P < 0.001) in GnRH-A treated gilts than in control gilts, but nevertheless both GnRH-A treated and control gilts responded to PMSG with increased plasma oestradiol levels. Treatment with GnRH-A reduced both the mean (2.1 vs. 2.7 mm; P < 0.01) and the maximal follicle diameter (4 vs. 6 mm) and reduced (P < 0.01) the total number of follicles > or = 2 mm diameter compared with control gilts. Administration of PMSG increased both mean follicle diameter (5.1 vs. 4.4 mm; P < 0.01) and maximal follicle diameter (7 vs. 9 mm) and caused a reduction (P < 0.001) in the total number of follicles > or = 2 mm diameter in both GnRH-A treated and control gilts. In summary, this study has demonstrated, for the first time in the pig, that the inhibition of follicle development as a result of pituitary down regulation/desensitisation can be reversed by exogenous gonadotrophin treatment. This model will be a powerful tool with which to investigate the precise regulation of follicle development in the pig.  相似文献   

9.
Luteinizing hormone requirements for ovulation induction were studied in proestrous rats through detailed observation of the preovulatory surge, through various forms of LH injection under sodium pentobarbital blockade, and through estimation of LH uptake by the ovary. Blood LH levels in individual proestrous rats were obtained every 30 min and grouped according to their peak time (designated 0 h); mean LH levels higher than 7 and 5 ng/ml continued for 30 min and 2.5 h, respectively, the pituitary LH contents at 1400 and 2000 h on the day of proestrus were 2.1 and 0.7 micrograms, respectively, indicating that the amount of LH secreted during the surge was at least 1.4 micrograms. Single intravenous injections of 2 micrograms and 1 micrograms of pure rat LH (NIDDK-rLH-I-7; FSH and prolactin contaminations: 0.02% and less than 0.01%, respectively) to sodium pentobarbital-blocked rats induced ovulation in 4 out of 4 rats and 4 out of 6 rats, respectively, while 500 ng failed to induce ovulation in any (out of 7) rats. Two injections of 300 ng each with an interval of 20 min induced ovulation in 3 out of 8 rats, but if the interval was prolonged to between 30 and 120 min, 100% ovulation was obtained. Blood LH levels in these experiments indicated that a lower long-lasting LH level (about 5 ng/ml blood) is more important than a short, high level for ovulation induction. It was also shown that this level of LH could be given in separate doses if the interval was 30-120 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We studied the effects on plasma LH levels of intracerebroventricular (ICV) administration of neuropeptide Y (NPY), NPY analog (NPY-A), galanin (GAL) and neuropeptide K (NPK) in ovariectomized (ovx) and in ovx rats pretreated with estradiol benzoate (EB) and progesterone (P). Plasma LH levels were estimated in blood drawn from an intrajugular cannula before (0 min) and at 10, 20, 30 and 60 min after the ICV injection of either saline (3 microliter) or one of the neuropeptides in saline. The three classes of peptides elicited different LH responses in the two experimental paradigms. NPY and NPY-A (0.5 or 2 micrograms) decreased LH release in ovx rats and stimulated LH release in EBP ovx rats. However, GAL (0.5, 2 or 10 micrograms) failed to suppress LH release in ovx rats, but it readily increased plasma LH levels in a dose-related fashion in EBP ovx rats. In contrast, NPK readily decreased LH release in ovx rats in a time-related fashion for up to 60 min, but was mildly effective in EBP ovx rats as only a high dose of 10 micrograms produced a small significant increase. Collectively, our results show that (1) NPY can differentially effect LH release in ovx and EBP ovx rats but this property is not equally shared by the neuropeptides that have a similar anatomical disposition in the hypothalamus and (2) the excitatory effects of GAL are demonstrable in the steroid-primed rats and the inhibitory effects of NPK are apparent in the steroid-unprimed ovx rats. Since NPK induced a long-lasting marked suppression with little evidence of LH excitation at low doses, we speculate that either NPK alone or in conjunction with other peptides may mediate the suppression of LH release induced by gonadal steroids.  相似文献   

11.
The inhibitory effects of the potent GnRH antagonist, [Ac-D-pCl-Phe1,2,D-Trp3,D-Arg6,DAla10]GnRH (GnRHant) upon pituitary-gonadal function were investigated in normal and castrated male rats. The antagonist was given a single subcutaneous (s.c.) injections of 1-500 micrograms to 40-60 day old rats which were killed from 1 to 7 days later for assay of pituitary GnRH receptors, gonadal receptors for LH, FSH, and PRL, and plasma gonadotropins, PRL, and testosterone (T). In intact rats treated with low doses of the antagonist (1, 5 or 10 micrograms), available pituitary GnRH receptors were reduced to 40, 30 and 15% of the control values, respectively, with no change in serum gonadotropin, PRL, and T levels. Higher antagonist doses (50, 100 or 500 micrograms) caused more marked decreases in free GnRH receptors, to 8, 4 and 1% of the control values, which were accompanied by dose-related reductions in serum LH and T concentrations. After the highest dose of GnRHant (500 micrograms), serum LH and T levels were completely suppressed at 24 h, and serum levels of the GnRH antagonist were detectable for up to 3 days by radioimmunoassay. The 500 micrograms dose of GnRHant also reduced testicular LH and PRL receptors by 30 and 50% respectively, at 24 h; by 72 h, PRL receptors and LH receptors were still slightly below control values. In castrate rats, treatment with GnRHant reduced pituitary GnRH receptors by 90% and suppressed serum LH and FSH to hypophysectomized levels. Such responses in castrate animals were observed following injection of relatively low doses of GnRHant (100 micrograms), after which the antagonist was detectable in serum for up to 24 h. These data suggest that extensive or complete occupancy of the pituitary receptor population by a GnRH antagonist is necessary to reduce plasma gonadotropin and testosterone levels in intact rats. In castrate animals, partial occupancy of the available GnRH receptor sites appears to be sufficient to inhibit the elevated rate of gonadotropin secretion.  相似文献   

12.
T Sato  T Jyujo 《Prostaglandins》1976,12(6):1083-1091
Five min following a single iv injection of PGE2 into ovariectomized mature rats pretreated with estrogen and progesterone, plasma LH and plasma and pituitary cyclic AMP levels were raised significantly. A close correlation was observed between increased pituitary cyclic AMP contents and release of plasma LH. The average level of cyclic AMP in the anterior pituitary and plasma cyclic AMP increased significantly, while the circulating plasma LH level was not changed at 1 min after PGE2 injection. Plasma LH le-el increased at 2 min after PGE2 and reached a maximum level at the above-mentioned time. This is consistent with hypothesis that increased release of hormone is a consequence of increased pituitary cyclic AMP content.  相似文献   

13.
Jugular venous blood samples were obtained from 7 dairy cows every 10 min for 10-19 h during the early- or mid-luteal phase of the oestrous cycle, and each cow was given 1 or 2 i.v. injections of 100 micrograms synthetic Gn-RH. Four of these cows were also sampled in a different cycle with no treatment being administered. Peaks of plasma LH, FHS and progesterone were detected in each animal in the absence of treatment; those of LH and progesterone often occurred in parallel. Injection of Gn-RH was always followed by a significant increase in plasma LH and progesterone concentrations and in most cases by a significant FSH increase. There was a significant temporal relationship between the peaks of all 3 hormones. A further 8 cows were sampled during the first 10 days post partum when the mean plasma progesterone concentration was low. An i.v. injection of 200 micrograms synthetic Gn-RH was given to each animal and this resulted in a significant increase in plasma LH and FSH concentrations, but in only one cow was the Gn-RH injection followed by a significant increase in plasma progesterone concentration. The LH response to Gn-RH injection was significantly less in cows injected on or before Day 5 post partum than in cows injected on Days 7-10 post partum.  相似文献   

14.
Five min following a single iv injection of PGE2 into ovariectomized mature rats pretreated with estrogen and progesterone, plasma LH and plasma and pituitary cyclic AMP levels were raised significantly. A close correlation was observed between increased pituitary cyclic AMP contents and release of plasma LH. The average level of cyclic AMP in the anterior pituitary and plasma cyclic AMP increased significantly, while the circulating plasma LH level was not changed at 1 min after PGE2 injection. Plasma LH level increased at 2 min after PGE2 and reached a maximum level at the above-mentioned time. This is consistent with hypothesis that increased release of hormone is a consequence of increased pituitary cyclic AMP content.  相似文献   

15.
The response of plasma LH, Prolactin, GH and TSH levels to systematic administration of a specific central dopaminergic stimulant, amfonelic acid (AFA), by intravenous pulse injection in ovariectomized (OVX) and OVX estrogen-progesterone primed conscious rats has been evaluated. Intravenous injection of 0.2 mg/kg of AFA had no influence on plasma LH concentration until 60 min after injection when it was significantly elevated. Increasing the dose to 1 mg/kg reduced LH titers at 15 and 30 min with a return to preinjection levels by 60 min. AFA produced a dose-dependent decrease in plasma prolactin levels; the decrease occurred as early as 5 min after injection. AFA, both at 0.2 and 1 mg/kg doses, was effective in producing a sharp, dose-related rise in plasma GH levels. By contrast, TSH levels were significantly suppressed by both doses of AFA. Injection of the 1 mg/kg dose of AFA did not modify plasma LH levels in OVX-steroid-primed animals, white producing a comparable effect on plasma prolactin, GH and TSH levels to that observed in OVX animals. The present results indicate that endogenously released DA can have profound effects on pituitary hormone release, inhibiting PRL and TSH discharge, stimulating GH release and either inhibiting or stimulating LH release.  相似文献   

16.
To investigate a role for the brain-gut peptide neurotensin (NT) in ingestive behavior, changes in food and water intake of food-deprived rats were examined following injection of NT into the paraventricular hypothalamic nucleus (PVN) or the mesenteric vein. Unilateral PVN NT (2.5, 5.0, 10.0 micrograms/0.3 microliter) produced substantial dose-dependent reductions in total food intake 0.5, 1, and 4 hr postinjection. In contrast, PVN NT had no effect on water intake and produced no change in grooming, rearing, sleeping, resting or locomotor activity. Bilateral PVN NT at a high dose (10.0 micrograms/side) suppressed consumption of solid or liquid diet in food-deprived rats, but did not affect water intake in water-deprived rats. This specificity is consistent with a role for CNS NT in feeding behavior. Intravenous NT (1-1000 pmole/kg/min for 30 min) did not specifically suppress food intake; however, low doses did increase water intake in food-deprived rats. These findings do not support a role for plasma NT in feeding, but do suggest that it may play a role in drinking behavior.  相似文献   

17.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

18.
The chronic administration of superactive agonists of gonadotropin releasing hormone (GnRH-A) have been reported to have a direct inhibitory effect on the sex tissues of the male rat. In an attempt to confirm or refute this statement, adult male rats were either left intact or were castrated and then treated daily for 14 days with either testosterone (T), dihydrotestosterone (DHT) or sesame oil (vehicle). Half of the intact and castrate animals also received daily injections of 200 ng of the GnRH agonist, D-Leu6, des-Gly10-GnRH ethylamide for 14 days. Twenty-four hours after completing treatment, blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and T were measured by radioimmunoassay and the ventral prostate gland (VP), seminal vesicle (SV) and penis were weighed. After 2 weeks of GnRH-A treatment, the plasma T level was reduced from 2506 +/- 170 (pg/ml +/- SEM) in the intact, nontreated animals to 907 +/- 69 in the intact, GnRH-A-treated group, indicating that the dosage of GnRH-A used in this study had an inhibiting effect on T secretion. No differences were observed in the VP, SV and penile weights between the castrate, GnRH-A and the castrate, nontreated groups. When exogenous T or DHT was given for 14 days to these castrated animals, the concomitant administration of GnRH-A did not appear to have any effect on the plasma T levels or the sex accessory tissue weights. These data suggest that GnRH-A itself does not appear to have a direct inhibitory or stimulatory effect on the sex tissues of the adult male rat.  相似文献   

19.
The responsiveness of the anterior pituitary to exogenous luteinizing hormone-releasing hormone (LHRH; 20 micrograms/kg body weight) and the subsequent stimulation of testosterone secretion by the testes was studied after administration of dietary aflatoxin (10 ppm) to 9-wk-old male chickens. In both control and aflatoxin-treated males, there were significant (p less than 0.05) increases in plasma luteinizing hormone (LH) concentrations following LHRH administration, which peaked at 5 min post injection and declined thereafter. Plasma testosterone levels increased soon after the LHRH injection in control males, secondary to elevated LH levels in the peripheral circulation, and continued to increase throughout the experimental period. In contrast, this LH-induced elevation in plasma testosterone was delayed in aflatoxin-treated males, with no substantial increase until 20 min post-LHRH injection. In a subsequent experiment, castration of aflatoxin-fed males resulted in an altered response to exogenous LHRH, as compared to their intact counterparts. Based on these data, it appeared that while the LH-secretory capacity of the anterior pituitary was not diminished in birds receiving aflatoxin, the testicular response to exogenous LHRH was altered during aflatoxicosis. Additionally, the effect of castration on plasma LH profiles after LHRH administration provides preliminary evidence for extra-testicular effects of dietary aflatoxin on reproduction in the avian male.  相似文献   

20.
The effect of intracerebroventricular (i.c.v.) injection of the alpha 2-adrenoceptor agonists clonidine and B-HT 920 on mean arterial pressure (MAP), heart rate (HR), and plasma concentrations of noradrenaline and adrenaline was examined in conscious unrestrained rats. The injection of 1.0 microgram clonidine significantly decreased MAP and slightly decreased HR. Plasma noradrenaline and adrenaline levels were slightly but not significantly decreased after the injection of 1 microgram clonidine. In contrast, the injection of 0.1-10.0 micrograms B-HT 920 increased MAP and decreased HR. Plasma noradrenaline and adrenaline levels were slightly increased after the injection of the 1- and 10-micrograms doses. The i.c.v. injection of the alpha 2-antagonist rauwolscine slightly but not significantly increased MAP and plasma noradrenaline and adrenaline levels. The responses to i.c.v. injection of clonidine and B-HT 920 were not changed by prior administration of rauwolscine. Neither the pressor response to B-HT 920 nor the depressor response to clonidine was abolished by rauwolscine, suggesting that neither response was mediated by alpha 2-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号