首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation is a common epigenetic modification, and the current commonly used methods for DNA methylation detection include methylation-specific PCR, methylation-sensitive restriction endonuclease-PCR, and methylation-specific sequencing. DNA methylation plays an important role in genomic and epigenomic studies, and combining DNA methylation with other epigenetic modifications, such as histone modifications, may lead to better DNA methylation. DNA methylation also plays an important role in the development of disease, and analyzing changes in individual DNA methylation patterns can provide individualized diagnostic and therapeutic solutions. Liquid biopsy techniques are also increasingly well established in clinical practice and may provide new methods for early cancer screening. It is important to find new screening methods that are easy to perform, minimally invasive, patient-friendly, and affordable. DNA methylation mechanisms are thought to have an important role in cancer and have potential applications in the diagnosis and treatment of female tumors. This review discussed early detection targets and screening methods for common female tumors such as breast, ovarian, and cervical cancers and discussed advances in the study of DNA methylation in these tumors. Although existing screening, diagnostic, and treatment modalities exist, the high morbidity and mortality rates of these tumors remain challenging.  相似文献   

2.
The p16 tumor suppressor gene is inactivated by promoter region hypermethylation in many types of tumor. Recent studies showed that aberrant methylation of the p16 gene is an early event in many tumors, especially in lung cancer, and may constitute a new biomarker for early detection and monitoring of prevention trials. We detected tumor-associated aberrant hypermethylation of the p16 gene in plasma and tissue DNA from 153 specimens using a modified semi-nested methylation-specific PCR (MSP) combining plastic microchip electrophoresis or slab gel electrophoresis, respectively. Specimens were from 79 lung cancer patients, 15 abdominal tumor patients, 30 positive controls and 30 negative controls. The results showed that the positive rate obtained by microchip electrophoresis was more than 26.6% higher and the same specificity was kept when compared with slab gel electrophoresis. The microchip electrophoresis can rapidly and accurately analyze the PCR products of methylated DNA and obviously improve the positive rate of diagnosis of cancer patients when compared with gel electrophoresis. This method with the high assay sensitivity might be used for detection of methylation of p16 gene and even to facilitate early diagnosis of cancer patients.  相似文献   

3.
Better understanding of the relationship between changes in the overall methylation status of hepatocellular carcinoma (HCC) and disease progression will help us find good strategies for the early detection and treatment of HCC patients. The purpose of the study was to study the relations between the methylation status changes in HCC patients and progression of the disease to enable early detection and treatment of HCC patients. First, the DNA methylation data of 50 HCC samples and the surrounding normal samples were extracted and the change pattern of methylation status in the DNA promoter region of HCC samples against that of normal samples was studied. Then, some DNA methylation genes that could accurately identify cancer and cancer-adjacent tissues were identified using the k-top scoring pair method. Also, a prognostic signature that could predict the survival of HCC patients was constructed based on the overall survival time and death information of the early HCC patients. Finally, the obtained prognostic signature was verified. In conclusion, this study described the changes in the methylation spectrum during the development of HCC and identified genes associated with HCC progression and prognosis, which may offer new opportunities for the diagnosis and treatment of HCC.  相似文献   

4.
DNA hypermethylation in tumorigenesis: epigenetics joins genetics   总被引:88,自引:0,他引:88  
  相似文献   

5.
Aberrant DNA methylation occurs early in oncogenesis, is stable, and can be assayed in tissues and body fluids. Therefore, genes with aberrant methylation can provide clues for understanding tumor pathways and are attractive candidates for detection of early neoplastic events. Identification of sequences that optimally discriminate cancer from other diseased and healthy tissues is needed to advance both approaches. Using well-characterized specimens, genome-wide methylation techniques were used to identify candidate markers specific for colorectal neoplasia. To further validate 30 of these candidates from genome-wide analysis and 13 literature-derived genes, including genes involved in cancer and others with unknown functions, a high-throughput methylation-specific oligonucleotide microarray was used. The arrays were probed with bisulfite-converted DNA from 89 colorectal adenocarcinomas, 55 colorectal polyps, 31 inflammatory bowel disease, 115 extracolonic cancers, and 67 healthy tissues. The 20 most discriminating markers were highly methylated in colorectal neoplasia (area under the receiver operating characteristic curve > 0.8; P < 0.0001). Normal epithelium and extracolonic cancers revealed significantly lower methylation. Real-time PCR assays developed for 11 markers were tested on an independent set of 149 samples from colorectal adenocarcinomas, other diseases, and healthy tissues. Microarray results could be reproduced for 10 of 11 marker assays, including eight of the most discriminating markers (area under the receiver operating characteristic curve > 0.72; P < 0.009). The markers with high specificity for colorectal cancer have potential as blood-based screening markers whereas markers that are specific for multiple cancers could potentially be used as prognostic indicators, as biomarkers for therapeutic response monitoring or other diagnostic applications, compelling further investigation into their use in clinical testing and overall roles in tumorigenesis.  相似文献   

6.
为了检测肺癌患者血浆中WIF-I基因启动子区的甲基化状态,收集肺癌患者及健康对照者的血浆标本,采用巢式甲基化特异性PCR(nMSP)法检测WIF-I基因启动子区甲基化状态,并与普通甲基化特异性PCR(MSP)法进行了比较,结果在58例肺癌患者血浆样品中经nMSP法发现20例WIF-I基因启动子的过甲基化,用MSP法只检出10例,有吸烟史组WIF-1基因的甲基化率高于无吸烟史组(P〈0.05).而20例正常对照血浆中都未检测到形胆J基因启动子的过甲基化;表明利用巢式MSP(nMSP)法检测外周血血浆中WIF-1基因启动子的甲基化,可为非损伤性筛选和早期诊断肺癌提供有价值的信息.  相似文献   

7.
Lung cancer is the most common cancer and the leading cause of cancer-related morbidity and mortality worldwide. As early symptoms of lung cancer are minimal and non-specific, many patients are diagnosed at an advanced stage. Despite a concerted effort to diagnose lung cancer early, no biomarkers that can be used for lung cancer screening and prognosis prediction have been established so far. As global DNA demethylation and gene-specific promoter DNA methylation are present in lung cancer, DNA methylation biomarkers have become a major area of research as potential alternative diagnostic methods to detect lung cancer at an early stage. This review summarizes the emerging DNA methylation changes in lung cancer tumorigenesis, focusing on biomarkers for early detection and their potential clinical applications in lung cancer.  相似文献   

8.
Many differentially methylated genes have been identified in prostate cancer (PCa), primarily using candidate gene-based assays. Recently, several global DNA methylation profiles have been reported in PCa, however, each of these has weaknesses in terms of ability to observe global DNA methylation alterations in PCa. We hypothesize that there remains unidentified aberrant DNA methylation in PCa, which may be identified using higher resolution assay methods. We used the newly developed Illumina HumanMethylation450 BeadChip in PCa (n = 19) and adjacent normal tissues (n = 4) and combined these with gene expression data for identifying new DNA methylation that may have functional consequences in PCa development and progression. We also confirmed our methylation results in an independent data set. Two aberrant DNA methylation genes were validated among an additional 56 PCa samples and 55 adjacent normal tissues. A total 28,735 CpG sites showed significant differences in DNA methylation (FDR adjusted P<0.05), defined as a mean methylation difference of at least 20% between PCa and normal samples. Furthermore, a total of 122 genes had more than one differentially methylated CpG site in their promoter region and a gene expression pattern that was inverse to the direction of change in DNA methylation (e.g. decreased expression with increased methylation, and vice-versa). Aberrant DNA methylation of two genes, AOX1 and SPON2, were confirmed via bisulfate sequencing, with most of the respective CpG sites showing significant differences between tumor samples and normal tissues. The AOX1 promoter region showed hypermethylation in 92.6% of 54 tested PCa samples in contrast to only three out of 53 tested normal tissues. This study used a new BeadChip combined with gene expression data in PCa to identify novel differentially methylated CpG sites located within genes. The newly identified differentially methylated genes may be used as biomarkers for PCa diagnosis.  相似文献   

9.
10.
《Epigenetics》2013,8(4):221-230
Cell-free circulating DNA isolated from the plasma of individuals with cancer has been shown to harbor cancer-associated changes in DNA methylation, and thus it represents an attractive target for biomarker discovery. However, the reliable detection of DNA methylation changes in body fluids has proven to be technically challenging. Here we describe a novel combination of methods that allows quantitative and sensitive detection of DNA methylation in minute amounts of DNA present in body fluids (quantitative Methylation Analysis of Minute DNA amounts after whole Bisulfitome Amplification, qMAMBA). This method involves genome-wide amplification of bisulphite-modified DNA template followed by quantitative methylation detection using pyrosequencing and allows analysis of multiple genes from a small amount of starting DNA. To validate our method we used qMAMBA assays for four genes and LINE1 repetitive sequences combined with plasma DNA samples as a model system. qMAMBA offered high efficacy in the analysis of methylation levels and patterns in plasma samples with extremely small amounts of DNA and low concentrations of methylated alleles. Therefore, qMAMBA will facilitate methylation studies aiming to discover epigenetic biomarkers, and should prove particularly valuable in profiling a large sample series of body fluids from molecular epidemiology studies as well as in tracking disease in early diagnostics.  相似文献   

11.
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.  相似文献   

12.
Bladder cancer is the fourth most common cancer in men in the United States, and its recurrence rate is highest among all malignancies. The unmet need for improved strategies for early detection, treatment, and monitoring of the progression of this disease continues to translate into high mortality and morbidity. The quest for advanced diagnostic, therapeutic, and prognostic approaches for bladder cancer is a high priority, which can be achieved by understanding the molecular mechanisms of the initiation and progression of this malignancy. Aberrant DNA methylation in single or multiple cancer-related genes/loci has been found in human bladder tumors and cancer cell lines, and urine sediments, and correlated with many clinicopathological features of this disease, including tumor relapse, muscle-invasiveness, and survival. The present review summarizes the published research on aberrant DNA methylation in connection with human bladder cancer. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in this prime epigenetic field of research. Identifying the potentially reversible and ‘drugable’ aberrant DNA methylation events that initiate and promote bladder cancer development can highlight biological markers for early diagnosis, effective therapy and accurate prognosis of this malignancy.  相似文献   

13.
DNA methylation and cancer   总被引:33,自引:0,他引:33  
  相似文献   

14.
Alterations of genetic and epigenetic features can provide important insights into the natural history of breast cancer. Although DNA methylation analysis is a rapidly developing field, a reproducible epigenetic blood-based assay for diagnosis and follow-up of breast cancer has yet to be successfully developed into a routine clinical test. The aim of this study was to review multiple serum DNA methylation assays and to highlight the value of those novel biomarkers in diagnosis, prognosis and prediction of therapeutic outcome. Serum is readily accessible for molecular diagnosis in all individuals from a peripheral blood sample. The list of hypermethylated genes in breast cancer is heterogeneous and no single gene is methylated in all breast cancer types. There is increasing evidence that a panel of epigenetic markers is essential to achieve a higher sensitivity and specificity in breast cancer detection. However, the reported percentages of methylation are highly variable, which can be partly explained by the different sensitivities and the different intra-/inter-assay coefficients of variability of the analysis methods. Moreover, there is a striking lack of receiver operating characteristic (ROC) curves of the proposed biomarkers. Another point of criticism is the fact that 'normal' patterns of DNA methylation of some tumor suppressor and other cancer-related genes are influenced by several factors and are often poorly characterized. A relatively frequent methylation of those genes has been observed in high-risk asymptomatic women. Finally, there is a call for larger prospective cohort studies to determine methylation patterns during treatment and follow-up. Identification of patterns specific for a differential response to therapeutic interventions should be useful. Only in this way, it will be possible to evaluate the predictive and prognostic characteristics of those novel promising biomarkers.  相似文献   

15.
《Epigenetics》2013,8(7):500-511
Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p  相似文献   

16.
Hou P  Ji M  Ge C  Shen J  Li S  He N  Lu Z 《Nucleic acids research》2003,31(16):e92
Aberrant DNA methylation of the CpG site is among the earliest and most frequent alterations in cancer. Detection of promoter hypermethylation of cancer-related genes may be useful for cancer diagnosis or the detection of recurrence. p16, an inhibitor of the cyclin D-dependent protein kinases, is a classical tumor suppressor gene, and its inactivation is closely associated with carcinogenesis. p16 hypermethylation could be detected in each stage, which is consistent with the finding that aberrant methylation of p16 is a very early event in carcinogenesis. We have developed an electrochemical procedure for detecting DNA methylation of the human p16(Ink4a) gene. The procedure is based on the coupling of DNA electrochemical sensors with linker-PCR- amplified DNA from human gastric tumor tissue and whole blood cells of healthy human. The synthesized oligonucleotide was immobilized on the modified gold electrode to fabricate a DNA biosensor. The hybridization reaction on the electrode surface was monitored by cyclic voltammogram (CV) and square wave voltammogram (SWV), using [Co(phen)(3)](ClO(4))(3) as a redox indicator. Methylation status of human p16(Ink4a) gene was detected and the results were validated by bisulfite DNA sequencing. A good reproducibility was observed in several parallel experiments. The coupling of DNA electrochemical sensors with PCR allowed quick detection and have the potential of the quantitative evaluation of the methylation status of the human p16(Ink4a) gene.  相似文献   

17.
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.  相似文献   

18.
19.
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号