首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During the spring and early summer of 2002, we examined the relative importance of Borrelia-refractory lizards (Sceloporus occidentalis, Elgaria spp.) versus potential Borrelia burgdorferi sensu lato (s.l.)-reservoirs (rodents) as hosts for Ixodes pacificus immatures in 14 woodland areas (six oak, five mixed oak/Douglas fir, and three redwood/tanoak areas) distributed throughout Mendocino County, California. Lizards were estimated to serve as hosts for 93-98% of all larvae and > or =99.6% of all nymphs infesting lizards or rodents in oak woodlands and oak/Douglas fir sites in the southern part of the county. In redwood/tanoak woodlands and oak/Douglas fir sites in northern Mendocino County, the contribution of rodents to larval feedings reached 36-69% but lizards still accounted for 94-100% of nymphal bloodmeals. From late April to mid-June, I. pacificus larvae were recovered from 95 to 96% of lizards and dusky-footed woodrats (Neotoma fuscipes) and from 59% of Peromyscus spp. mice. In contrast, 99% of lizards but few woodrats (15%) and none of the mice were infested by nymphs. Comparisons of tick loads for 19 lizard-Peromyscus spp. mouse pairings, where the lizard and mouse were captured within 10m of each other, revealed that the lizards harbored 36 times more larvae and >190 times more nymphs than the mice. In oak woodlands, loads of I. pacificus larvae decreased from late April/early May to late June for S. occidentalis lizards but increased for Peromyscus spp. mice. We conclude that the relative utilization of Borrelia-refractory lizards, as compared to rodents, by I. pacificus larvae was far higher in dry oak woodlands than in moister habitats such as redwood/tanoak and oak/Douglas fir woodlands in northern Mendocino County. Non-lizard-infesting potential enzootic vectors of B. burgdorferi s.l. (I. angustus and I. spinipalpis) were recorded from rodents in three of six oak woodland areas, two of five oak/Douglas fir woodland areas, and two of three redwood/tanoak woodland areas.  相似文献   

2.
The prevalence and abundance of immature Ixodes pacificus ticks on western fence lizards (Sceloporus occidentalis) were examined in relation to time of year, host attributes (i.e., age, gender, and presence or absence of blood parasites), and 5 environmental characteristics, including topographic exposure and ground cover substrate, over a 2-year period in northern California. Lizards were infested with subadult ticks from early March until late July or early August, with peak median numbers of larvae and nymphs recorded in late April and early May of both years. Peak larval and nymphal abundances differed between years. The overall ratio of larvae to nymphs on adult male lizards was low, ranging from 0.80 in 1999 to 2.41 in 2000. Such intensive feeding of nymphs versus larvae on these lizards, which are reservoir-incompetent for Borrelia burgdorferi spirochetes, may explain previous observations of decreasing spirochetal infection prevalence from the nymphal to adult stage in northwestern California. Adult male lizards were more likely to be infested with nymphs and harbored greater abundances of larvae and nymphs than adult females. Lizards uninfected with blood parasites had more nymphs than infected lizards. The measured environmental characteristics could explain only a small percentage of the total variation observed in larval prevalence (22%) and in larval and nymphal abundance (12 and 3%, respectively).  相似文献   

3.
To determine whether replete subadult Ixodes ticks detach more frequently from resting than from active hosts, diverse rodents and lizards were caged in an apparatus designed to record the ticks' sites of detachment relative to the resting site of the host. Replete larval Ixodes ricinus and Ixodes dammini accumulated mainly beneath the resting places of the mice (Apodemus agrarius and Peromyscus leucopus) most frequently parasitized in nature. Although nymphal I. ricinus similarly detached where these mice rested, nymphal I. dammini detached more randomly. When lizards were used as hosts, both subadult stages of I. ricinus tended to detach away from their main resting sites; these ticks detached from squirrels more randomly. Detachment ratios for other rodent hosts, that are abundantly infested by the larvae of these ticks in nature (Apodemus flavicollis and Clethrionomys glareolus), could not be derived because nymphs generally failed to attach. Our observations are consistent with reports that both subadult stages of I. dammini, but not the adult, feed on the same kind of nest-dwelling hosts and that the host range of I. ricinus is less focused. Detachment of mouse-feeding larvae from resting mice promotes subsequent nymphal attachment to conspecific hosts, and the absence of such behavior among nymphs facilitates access of the resulting adults to deer.  相似文献   

4.
The western fence lizard, Sceloporus occidentalis, is refractory to experimental infection with Borrelia burgdorferi sensu stricto, one of several Lyme disease spirochetes pathogenic for humans. Another member of the Lyme disease spirochete complex, Borrelia bissettii, is distributed widely throughout North America and a similar, if not identical, spirochete has been implicated as a human pathogen in southern Europe. To determine the susceptibility of S. occidentalis to B. bissettii, 6 na?ve lizards were exposed to the feeding activities of Ixodes pacificus nymphs experimentally infected with this spirochete. None of the lizards developed spirochetemias detectable by polymerase chain reaction for up to 8 wk post-tick feeding, infected nymphs apparently lost their B. bissettii infections within 1-2 wk after engorgement, and xenodiagnostic L. pacificus larvae that co-fed alongside infected nymphs did not acquire and maintain spirochetes. In contrast, 3 of 4 na?ve deer mice (Peromyscus maniculatus) exposed similarly to feeding by 1 or more B. bissettii-infected nymphs developed patent infections within 4 wk. These and previous findings suggest that the complement system of S. occidentalis typically destroys B. burgdorferi sensu lato spirochetes present in tissues of attached and feeding I. pacificus nymphs, thereby potentially reducing the probability of transmission of these bacteria to humans or other animals by the resultant adult ticks.  相似文献   

5.
Birds and their attendant ticks were surveyed for infection with the Lyme disease spirochete Borrelia burgdorferi, in chaparral and woodland-grass habitats in northwestern California from March to July, 1998 to 1999. In total, 234 birds were captured and recaptured (15%); nearly 2.5 times more birds were captured in chaparral than in woodland-grass. Overall, 34 species representing 15 families were collected during this study; of these, 24 species were caught in chaparral, 19 in woodland-grass, and 9 in both vegetational types. The most frequently captured birds were sage sparrows (Amphispiza belli) in chaparral, and American robins (Turdus migratorius) and oak titmice (Baelophus inornatus) in woodland-grass. Birds hosted 35 Ixodes pacificus (15 larvae, 20 nymphs) and 9 Haemaphysalis leporispalustris (3 larvae, 5 nymphs, 1 adult) ticks, of which 32 were removed from chaparral birds and 12 from woodland birds. The prevalence of tick infestation was 13% (21/167) in chaparral and 5% (3/67) in woodland-grass, but the relative and mean tick intensities of 0.19 and 1.5 for chaparral birds, and 0.18 and 4.0 for woodland birds, respectively, did not differ significantly by habitat. Spirochetes were not detected in either bird-blood or tick-tissue samples when tested by culture, immunofluorescence, or Giemsa-staining. In contrast, over 90% (86/94) of western fence lizards (Sceloporus occidentalis) collected in June or July were infested with an average of 6.9 and 8.9 immature I. pacificus in chaparral and woodland-grass, respectively. We conclude that birds contribute little to the enzootiology of B. burgdorferi in chaparral and woodland-grass habitats in northwestern California because of their limited parasitism by tick vectors and lack of detectable spirochetemias.  相似文献   

6.
The role of small mammals other than woodrats in the enzootiology of the Lyme disease spirochete, Borrelia burgorferi, was assessed in a peri-urban park. Mammals were collected monthly from September through to April. Following tick removal, the animals were tested for B. burgdorferi by culture of ear-punch biopsies. Larvae and nymphs that were intermediate in morphology between Ixodes spinipalpis and Ixodes neotomae occurred on several species of rodents (Peromyscus truei, Peromyscus californicus, Microtus californicus, Rattus rattus and Reithrodontomys megalotis) and the brush rabbit (Sylvilagus bachmani). Morphometric analyses of these I. spinipalpis-like ticks and the offspring from two I. neotomae females from this site suggest that I. neotomae may be conspecific with I. spinipalpis. Borrelia burgdorferi was isolated from eight out of 109 (7.3%), three out of 16 (18.8%), two out of 38 (5.3%) and two out of six (33.3%) P. truei, P. maniculatus, M. californicus and R. rattus, respectively. One brush rabbit yielded the first isolate of B. burgdorferi from a lagomorph in western North America. This isolate and three others derived from unfed I. spinipalpis-like nymphs failed to produce infection when inoculated intradermally into 11–12 P. maniculatus each. Likewise, no spirochetes were detected in 420 Ixodes pacificus nymphs derived from larvae fed on animals inoculated with these isolates. An additional isolate, derived from an I. spinipalpis-like nymph, was recovered by ear-punch biopsies from five out of 12 (42%) needle-inoculated P. maniculatus. However, spirochetes were not detected in 20 I. pacificus nymphs fed as larvae on each of five mice (two infected and three uninfected) inoculated with this isolate. We conclude that brush rabbits and several species of rodents besides woodrats may contribute to the maintenance of B. burgdorferi because they harbour the spirochete and are fed upon by competent enzootic and bridge vectors.  相似文献   

7.
We examined the impact of environmental characteristics, such as habitat type, topographic exposure and presence of leaf litter, on the abundance of Ixodes pacificus ticks infesting the western fence lizard (Sceloporus occidentalis) at the University of California Hopland Research and Extension Center (HREC), Mendocino County, California. A total of 383 adult lizards were slip-noosed and examined for tick infestation in April and May 1998. At least 94% of the lizards were infested by ticks and at least 20% of the females and 33% of the males carried > 15 ticks. This intensive utilization of western fence lizards (which do not serve as natural reservoirs for Lyme disease spirochetes) by subadult ticks, is probably the primary reason for the low prevalence of infection with Borrelia burgdorferi in I. pacificus nymphs and adults previously recorded at the HREC. Tick loads were higher on male than female lizards. Also, male lizards were generally more heavily infested in late April than in late May. The prevalence of tick infestation exceeded 88% in all habitat types but males collected in woodland and grass/woodland edges had higher tick loads than those collected in open grassland. Male lizards captured in open, exposed grassland tended to carry heavier tick loads in northern/eastern, as compared to southern/western, exposures, and when leaf litter was present.  相似文献   

8.
Lizards and mammals were trapped and examined for ticks from August 1992 to June 1993 in two habitat types, chaparral and woodland-grass, in northern California. Five tick species were collected from mammals (Dermacentor occidentalis, Haemaphysalis leporispalustris, Ixodes pacificus, I. spinipalpis, I. woodi), but only I. pacificus was found on lizards. Dermacentor occidentalis, I. pacificus, and I. woodi occurred in both habitats, whereas H. leporispalustris and I. spinipalpis were found only on animals trapped in chaparral. The tick species most commonly encountered on mammals was D. occidentalis in chaparral and I. pacificus in woodland-grass. Peak infestation of mammals occurred in spring for I. pacificus immatures and H. leporispalustris, summer for D. occidentalis immatures, fall through spring for I. woodi immatures, and fall through winter for I. spinipalpis. The primary aim of the study was to quantify the relative importance of the western fence lizard (Sceloporus occidentalis), which is reservoir-incompetent for Borrelia burgdorferi sensu lato (s.l.), and mammalian B.burgdorferi s.l.-reservoirs as hosts for the immature stages of I. pacificus in spring. The estimated relative utilization by I. pacificus of the western fence lizard versus mammals was 88% for larvae and 99% for nymphs in chaparral in May. When tick infestation data were corrected for a two-fold lower efficiency of field examinations for rodents than for lizards, the western fence lizard still accounted for 78% of larval and 98% of nymphal feedings. In woodland-grass, 46% of 100 I. pacificus larvae and 100% of 52 nymphs recovered from mammals or western fence lizards during May-June were collected from the lizards. However, this may represent an underestimate of the importance of the western fence lizard as a larval host in this habitat because inclement weather during the late May sampling period doubtless resulted in significantly decreased lizard activity. In conclusion, the western fence lizard was more heavily utilized by I. pacificus immatures, especially nymphs, than were rodents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The present study reports a collection of Amblyomma spp. ticks in birds from several areas of the state of São Paulo, Brazil. A total of 568 tick specimens (404 larvae, 164 nymphs) were collected from 261 bird specimens. From these ticks, 204 (36%) specimens (94 larvae, 110 nymphs) were reared to the adult stage, being identified as Amblyomma longirostre (94 larvae, 90 nymphs), Amblyomma calcaratum (13 nymphs), Amblyomma nodosum (2 nymphs), and Amblyomma cajennense (5 nymphs). Additionally, 39 larvae reared to the nymphal stage and 8 nymphs that died before reaching the adult stage were identified as A. longirostre according to peculiar characters inherent to the nymphal stage of this species: scutum elongate, and hypostome pointed. The remaining 271 larvae and 46 nymphs were identified as Amblyomma sp. Ticks were collected from 51 species of birds distributed in 22 bird families and 6 orders. The order Passeriformes constituted the vast majority of the records, comprising 253 (97%) out of the 261 infested birds. Subadults of A. longirostre were identified from 35 species of Passeriformes, comprising 11 families (Cardinalidae, Dendrocolaptidae, Fringillidae, Furnariidae, Parulidae, Pipridae, Thamnophilidae, Thraupidae, Turdidae, Tyrannidae, and Vireonidae), and from 1 species of a non-passerine bird, a puffbird (Bucconidae). Subadults of A. calcaratum were identified from 5 species of Passeriformes, comprising 5 families (Cardinalinae, Conopophagidae, Pipridae, Thamnophilidae and Turdidae). Subadults of A. nodosum were identified from 2 species of Passeriformes, comprising two bird families (Thamnophilidae and Pipridae). Subadults of A. cajennense were identified from 2 species of non-passerine birds, belonging to 2 different orders (Ciconiiformes: Threskiornithidae, and Gruiformes: Cariamidae). Birds were usually infested by few ticks (mean infestation of 2.2 ticks per bird; range: 1–16). Currently, 82 bird species are known to be infested by immature stages of A. longirostre, with the vast majority [74 (90%)] being Passeriformes. Our results showed that Passeriformes seems to be primary hosts for subadult stages of A. longirostre, A. calcaratum, and A. nodosum. However, arboreal passerine birds seem to be the most important hosts for A. longirostre whereas ground-feeding passerine birds seem to be the most important for both A. calcaratum and A. nodosum. In contrast, the parasitism of birds by subadults of A. cajennense has been restricted to non-passerine birds.  相似文献   

10.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

11.
This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi‐ or B. bissettii‐infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky‐footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely‐spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak‐woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host‐targeted acaricides or oral vaccination against B. burgdorferi.  相似文献   

12.
We examined host usage and seasonal activity patterns of the nymphal stage of the ticks Ixodes kingi and I. sculptus within a prairie rodent community in north-central Colorado. Ixodes kingi was commonly encountered on both northern grasshopper mice (Onychomys leucogaster) and thirteen-lined ground squirrels (Spermophilus tridecemlineatus), whereas I. sculptus frequently infested S. tridecemlineatus but was absent from O. leucogaster. Low numbers of ticks of both species were collected from deer mice (Peromyscus maniculatus) and Ord's kangaroo rats (Dipodomys ordii). Nymphal loads of I. kingi and I. sculptus increased dramatically on commonly infested rodent species from spring (May-June) to summer (July-August). Further, rodents trapped on prairie-dog towns tended to experience increased nymphal loads of I. kingi (O. leucogaster, S. tridecemlineatus) but decreased loads of I. sculptus (S. tridecemlineatus) following plague epizootics among prairie dog populations. A summary of published North American host records revealed that I. kingi has been recorded from humans, domestic animals (cat, dog), 17 species of carnivores, 40 species of rodents, and four species of lagomorphs, and that I. sculptus has been recorded from humans, domestic animals (cat, dog, goat), 13 species of carnivores, 34 species of rodents, and three species of lagomorphs. In accordance with our observations from Colorado, I. kingi commonly has been found to infest heteromyid and murid rodents (such as grasshopper mice), whereas I. sculptus most frequently has been collected from ground-dwelling sciurid rodents, especially Spermophilus ground squirrels. The potential roles of I. kingi and I. sculptus as enzootic vectors of human pathogens, particularly the agents of tularemia (Francisella tularensis), Q fever (Coxiella burnetii), and Colorado tick fever (CTF virus), are discussed.  相似文献   

13.
We evaluated the prevalence, mean intensity and relative density of ticks in 467 wild birds of 67 species (12 families) from forest and cerrado habitats at two protected areas of Minas Gerais, between March and September 1997. Ticks collected (n=177) were identified as larvae and nymphs of Amblyomma cajennense and four other species of Amblyomma. We report for the first time 28 bird species as hosts of the immature stages of A. cajennense, demonstrating the lack of host specificity of the larvae and nymphs. A. cajennense had 15% prevalence on birds, with a mean infestation intensity of 0.37 ticks per host sampled, and 2.5 ticks per infested bird. Prevalence varied in relation to host species, diet and between birds from forests at two successional stages. There were no differences in relation to host forest dependence, participation in mixed flocks of birds, and nest type constructed. A. cajennense is a species of medical and veterinary importance, occurring on domestic animals but is known little of its occurrence on wildlife.  相似文献   

14.
The present study was carried out in a protected wooded area, which is part of the Parco Regionale Gallipoli Cognato Piccole Dolomiti Lucane, one of the most important ecological reserves in southern Italy. From April 2010 to April 2011, 212 birds, comprising 22 species from 12 families, were captured and examined for ticks. A total of 75 (35.4?%) birds were found infested by ticks, with 451 ticks being collected. All ticks were identified as Ixodes ricinus, of which 241 (53.4?%) were larvae and 210 nymphs (46.6?%). The highest intensity of infestation was found in April 2010, when 117 ticks were retrieved on 25 birds. No ticks were found on birds (n?=?5) netted in December 2010. High infestation rates were recorded on blackbirds (Turdus merula) (90 %; 29 birds examined) and on mistle thrushes (Turdus viscivorus) (100?%; 2 birds examined). The highest intensity of infestation by larvae was found on wrens (5.6 larvae/bird) and by nymphs on mistle thrushes (11.5 nymphs/bird). Temperature and number of hours of light showed to influence the activity of larvae and nymphs. These data support the notion that birds may be responsible for the heterogeneous distribution of I. ricinus in Europe, thus playing a role in the epidemiology of certain tick-borne pathogens.  相似文献   

15.
Between January 1999 and December 2000, 876 bird specimens were captured in three different ecological environments from the Reinhard Maack Park, Curitiba, State of Paraná, southern Brazil. A total of 142 birds (16.2%) were infested with Amblyomma aureolatum (Pallas 1772) (N=699) and/or Ixodes auritulus Neumann, 1904 (N=18) ticks. Questing A. aureolatum nymphs (N=2) and adults (N=5) were also collected from the soil and the vegetation. None of the I. auritulus were collected off-host. We collected only immatures of A. aureolatum on birds, but all life stages of I. auritulus. The latter species was collected on Turdus rufiventris and on Synallaxis ruficapilla, which is herein recognized as a host of I. auritulus for the first time. Moreover, this is also the first report of A. aureolatum infesting birds, and 16 different bird species were found infested. It was observed that larval infestation was positively correlated with the dry and cold season, while nymphal infestation was positively correlated with the warm and rainy season. Although only 2-years worth of data is provided, our results suggest the infestation of birds by ticks was significantly higher at the biotopes formed by forest at its first stage of regeneration 'capoeira' and the original Araucaria forest habitat 'mata' than the ecotone between forest and urban areas 'peripheral area'.  相似文献   

16.
An epidemiologic study designed to identify the small mammal reservoir for the zoonotic WA1-type babesial parasite resulted in the discovery of a small, intraerythrocytic piroplasm in smeared blood from dusky-footed woodrats (Neotoma fuscipes) in northern California. The woodrat parasites were isolated and compared to other piroplasm parasites based on their morphology, antigenicity, and genetic characteristics. These studies indicated that the woodrat parasites were not the WA1-type babesial agent but were of the genus Theileria. We accordingly named it Theileria youngi. The prevalence in the woodrat population was high (61%). Infection was unrelated to gender or age of the woodrats. Potential vectors for this tick-transmitted parasite included 3 species of ticks recovered from the woodrats. Dermacentor occidentalis, Ixodes woodi, and Ixodes pacificus. Mostly larval or nymphal stages were recovered, suggesting transstadial transmission is possible. This is the first piroplasm fully characterized from a dusky-footed woodrat.  相似文献   

17.
Rio Grande wild turkeys (Meleagris gallopavo intermedia) were evaluated as potential hosts of ixodid ticks, lice, and Lyme disease spirochetes (Borrelia burgdorferi sensu lato [s.l.]) in three state parks in Sonoma County, California, USA, during 2003 and 2004. In total, 113 birds were collected, 50 (44.2%) of which were found to be infested by 361 ixodid ticks representing three species: the western black-legged tick (Ixodes pacificus, n=248), the rabbit tick (Haemaphysalis leporispalustris, n=112), and one American dog tick (Dermacentor variabilis). Year-round the prevalence of all ticks combined was unrelated to the age or sex of turkeys, and the prevalence of infestation by I. pacificus (35.4%) was significantly higher than it was for either H. leporispalustris (14.2%) or D. variabilis (0.9%). The proportion of the two prevalent tick species differed significantly by life stage with 86.3% of the I. pacificus and 82.1% of the H. leporispalustris enumerated being nymphs and larvae, respectively. Three species of lice were collected, including the chicken body louse Menacanthus stramineus (12.5% of total), Chelopistes meleagridis (37.5% of total), and Oxylipeurus polytrapezius (50% of total). The records for all three ticks are the first ever from wild turkeys, and those for the lice are the first from this host in the far-western United States. Wild turkeys potentially were exposed to the feeding activities of I. pacificus nymphs infected with B. burgdorferi s.l. as 15% of host-seeking nymphs (n=200) collected in woodlands used by turkeys as roosting or foraging areas were infected mainly with B. burgdorferi sensu stricto (s.s.). However, only one (1%) of 90 turkey blood specimens tested by PCR contained B. burgdorferi s.s., and four in vitro, complement-protein assays demonstrated that domestic turkey serum is moderately bacteriolytic for this spirochete. Taken together, these findings indicate that wild turkeys are important avian hosts of I. pacificus nymphs, but they appear to be inconsequential hosts of B. burgdorferi s.l.  相似文献   

18.
Swei A  Ostfeld RS  Lane RS  Briggs CJ 《Oecologia》2011,166(1):91-100
Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.  相似文献   

19.
Moose, Alces alces, were infested with 21,000 or 42,000 larval Dermacentor albipictus at the end of September. Larvae grew rapidly and molted to the nymphal stage 10-22 days after infestation. The nymphal stage lasted approximately 3 mo until mid-January and was characterized by a diapause. The diapause is likely an adaptation to survival in cold climates. Nymphs started engorging in January and adults were seen with increasing abundance from mid-January to March and April. The minimum parasitic period was 175 days. Growth of larvae and nymphs was similar on moose given different numbers of larvae and was generally similar between a moose infested in November and moose infested earlier. Dimensions and stages of development throughout the parasitic phase are given. Game enforcement officers are encouraged to use these data for determination of season of death of moose.  相似文献   

20.
A total of 237 rodents was collected in 4 regions of South Carolina from July 1994 through December 1995. Eight species were collected, including cotton mouse, hispid cotton rat, eastern woodrat, marsh rice rat, white-footed mouse, eastern harvest mouse, golden mouse, and black rat. Of the 1,514 ticks recovered from these hosts, Ixodes minor Neumann, including larvae, nymphs, and adults, was the most abundant species, representing 54% of the total. Only immature stages of other tick species were found, including larvae and nymphs of Dermacentor variabilis (Say), Amblyomma maculatum Koch, Ixodes affinis Neumann, and Ixodes scapularis Say. All 5 tick species parasitized cotton mice, cotton rats, and woodrats, which were the most important small mammal hosts for ticks at the localities studied. Rice rats were hosts of A. maculatum, D. variabilis, and L. minor. Amblyomma maculatum was more strongly associated with cotton rats than other rodent species. Ixodes scapularis was most strongly associated with cotton mice, and I. minor was more strongly associated with both woodrats and cotton mice than other species of rodents. Ixodes minor parasitized hosts in the Coastal Zone only, where among spirochete-infected hosts, it was present in significantly greater numbers than other ticks. Furthermore, I. minor was the only tick species that showed a statistically significant positive association with spirochetal infection in rodents. More I. affinis parasitized spirochete-infected hosts than I. scapularis, but fewer than I. minor. The findings discussed herein provide evidence that implicates I. minor as the possible primary enzootic vector of the Lyme disease spirochete Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt and Brenner in the Coastal Zone of South Carolina. They also indicate that the high level of B. burgdorferi infection in rodents from this region may be a function of the combined involvement of I. minor, I. affinis, and I. scapularis in the enzootic transmission of the spirochete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号