首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a family of small repeated sequences (from 60 to 66 bp in length) in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare). There are at least ten copies of these sequences and they are distributed throughout the mitochondrial genome. Each is potentially capable of forming a stem-and-loop structure and we have designated them PRSs (palindromic repeated sequences). Their features are reminiscent of the small dispersed repeats in the mitochondrial DNA (mtDNA) of some lower eukaryotes, such as Saccharomyces cerevisiae, Neurospora crassa and Chlamydomonas reinhardtii. Some of the PRSs of rice mtDNA are located in the intron of the gene for ribosomal protein S3 (rps3) and in the flanking sequence of the gene for chloroplast-like tRNAAsn (trnN). An analysis of PCR-amplified fragments of these regions from the DNA of some Gramineae suggests that the PRSs were inserted into these regions of the Oryza mtDNA after the divergence of Oryza from the other Gramineae.  相似文献   

2.
A repeated DNA fragment (pKRD) was isolated from the genomic library of weedy rice in Korea. The pKRD showed significant homology to Em/Spm CACTA-like transposon in whole genome sequences of rice released in the Blast rice sequence database of NCBI and was closely related to the TNP2 transposase group, including a TNP-like transposable element of rice. A Southern hybridization experiment demonstrated that the pKRD sequence is unique to the Oryza genome. The 126 sequences homologous to pKRD were evenly distributed in all 12 different chromosomes in rice genomes with multiple copy numbers. Different copy numbers ranging from 1,500 to 4,500 corresponding to rice species were detected by slot blot hybridization. In a DNA fingerprinting experiment, a pKRD probe was assessed to be the potential molecular marker for studying evolution and divergence, biodiversity and phylogenic analysis of rice species.  相似文献   

3.
Summary Segments of mitochondrial DNA (mtDNA) carrying the gene for the -subunit of F1-ATPase (atpA) were detected by Southern hybridization with atpA from pea as probe. In the case of Nicotiana langsdorffii, we identified four fragments that are derived from combinations of two different 5 and two different 3 flanking regions of atpA. All four types share the coding region, suggesting that they result from homologous recombination in the coding region of atpA. By contrast, N. glauca generated only one analogous fragment, which indicated the existence of only a single type of atpA in N. glauca. In the case of somatic hybrids obtained by fusion between protoplasts from N. langsdorffii and N. glauca, analysis with EcoRI or HindIII detected three new fragments in addition to the parental fragments. These new fragments can be explained by homologous recombination within the coding region of atpA. Our results show that the coding region of atpA is involved not only in intragenomic homologous recombination but can also be involved in homologous recombination between two parental mitochondrial genomes of somatic hybrids.  相似文献   

4.
The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O. grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed.  相似文献   

5.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

6.
Genome-specific repetitive sequences in the genus Oryza   总被引:1,自引:0,他引:1  
Summary Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species divergence. In this paper, we report the isolation and characterization of four genome-type specific repetitive DNA sequences in the genus Oryza. Sequences specific to the AA, CC, EE or FF genome types are described. These genome-type specific repetitive sequences will be useful in classifying unknown species of wild or domestic rice, and in studying genome evolution at the molecular level. Using an AA genome-specific repetitive DNA sequence (pOs48) as a hybridization probe, considerable differences in its copy number were found among different varieties of Asian-cultivated rice (O. sativa) and other related species within the AA genome type. Thus, the relationship among some of the members of AA genome type can be deduced based on the degree of DNA sequence similarity of this repetitive sequence.  相似文献   

7.
Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.  相似文献   

8.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

9.
Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and rps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

10.
 Intron-2 of the Oryza sativa CatA catalase gene is similar in nucleotide sequence to p-SINE1, a retroposon, and seems to have been added to the ancestral genome of rice. To examine when the p-SINE1-like intron was inserted into CatA during the evolutionary divergence of Oryza species, and to elucidate the evolutionary relationships among Oryza species using the sequence of the intron as a marker, we performed polymerase chain reaction (PCR) analyses of 32 accessions of 17 Oryza species with various genome types. Agarose-gel electrophoresis of the PCR products revealed that all the Oryza species with an AA genome have the CatA homolog with the intron, whereas other Oryza species have the CatA homolog without the intron. These results indicate that intron-2 of CatA is a good marker for distinguishing species with an AA genome among Oryza species. Sequencing of the PCR products showed that all the introns are similar to p-SINE1, though with slight variations in length. We also performed PCR analyses using four accessions of three species in genera related to Oryza, and found that there is an intron in the CatA homolog of Leersia perrieri. On the other hand, the CatA homolog of Porteresia coarctata has no intron. Sequence data showed that the L. perrieri homolog has a p-SINE1-like intron similar to that in Oryza species with an AA genome. These results suggest that the p-SINE1-like intron was already present in the common ancestor of Oryza and L. perrieri and was then lost in the ancestors of P. coarctata and of the Oryza species other than those with an AA genome. The phylogenetic tree of Oryza species with an AA genome based on the nucleotide sequences of the introns leads us to propose that Oryza species with an AA genome evolved from an ancestor of Oryza longistaminata. Received: 29 August 1998 / Accepted: 2 November 1998  相似文献   

11.
The phenomenon of interspecific hybridization accompanied by transfer of the mitochondrial genome from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (Cl. glareolus) in northeastern Europe is well known already for 25 years. However, the possibility of recombination between homologous segments of maternal and paternal mtDNAs of the voles during fertilization was not previously studied. Analysis of data on variability of nucleotide sequences of the mitochondrial gene for cytochrome b in populations of red-backed and bank voles in the area of their sympatry has shown that as a result of interspecific hybridization, the mitochondrial gene pool of bank voles contains not only mtDNA haplotypes of red-backed vole females, but also mtDNA haplotypes of bank voles bearing short nucleotide tracts of red-backed vole mtDNA. This finding supports the hypothesis that an incomplete elimination of red-backed vole paternal mtDNA during the interspecific hybridization between bank vole females and red-backed vole males leads to the gene conversion of bank vole maternal mtDNA tracts by homologous ones of mtDNA of red-backed vole males.  相似文献   

12.
An ∼247-kb genomic region from FF genome of wild rice Oryza brachyantha, possessing the smallest Oryza genome, was compared to the orthologous ∼450-kb region from AA genome, O. sativa L. ssp. japonica. 37 of 38 genes in the orthologous regions are shared between japonica and O. brachyantha. Analyses of nucleotide substitution in coding regions suggest the two genomes diverged ∼10 million years ago. Comparisons of transposable elements (TEs) reveal that the density of DNA TEs in O. brachyantha is comparable to O. sativa; however, the density of RNA TEs is dramatically lower. The genomic fraction of RNA TEs in japonica is two times greater than in O. brachyantha. Differences, particularly in RNA TEs, in this region and in BAC end sequences from five wild and two cultivated Oryza species explain major genome size differences between sativa and brachyantha. Gene expression analyses of three ObDREB1 genes in the sequenced region indicate orthologous genes retain similar expression patterns following cold stress. Our results demonstrate that size and number of RNA TEs play a major role in genomic differentiation and evolution in Oryza. Additionally, distantly related O. brachyantha shares colinearity with O. sativa, offering opportunities to use comparative genomics to explore the genetic diversity of wild species to improve cultivated rice. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Data deposition: Sequence data from this article were deposited with GenBank Library under accession number DQ810282. Shibo Zhang and Yong Qiang Gu contributed equally to the work  相似文献   

13.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

14.
15.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

16.
Cytoplasmic male sterility (CMS) represents an important agricultural trait in pearl millet [Pennisetum glaucum (L.) R. Br.] with a value to the seed industry in facilitating economical hybrid seed production. Among the CMS systems available in millet, the A1 source is the most commonly used for hybrid production, but it can undergo low frequency reversion to fertility. Plant mitochondrial genomes are highly recombinogenic, becoming unstable and prone to ectopic recombination under conditions of tissue culture, somatic hybridization, or interspecific crossing. Similarly, CMS systems prone to spontaneous fertility reversion experience sporadic mitochondrial genome instability. We compared mitochondrial genome configurations between the male-sterile A1 line and fertile revertants of pearl millet to develop a model for millet mitochondrial genome reorganization upon reversion. Relative copy number of a subgenomic molecule containing the CoxI-1-2 junction region, a component of the recombination process for reversion, is amplified tenfold following reversion, relative to the CMS A1 line. We propose that increased copy number of this molecule in a small number of cells or at low frequency triggers a recombination cascade, likely during reproductive development. The proposed recombination process initiates with ectopic recombination through a 7-bp repeat to produce a novel CoxI-3-2 junction molecule and an unstable recombination intermediate. Subsequent intra-molecular recombination stabilizes the intermediate to form a new copy of CoxI accompanied by a deletion. This study furthers the argument that substoichiometric shifting within the plant mitochondrial genome plays an important role in the evolution of the mitochondrial genome and plant reproductive dynamics.  相似文献   

17.
 A polymerase chain reaction (PCR) application, involving the directed amplification of minisatellite-region DNA (DAMD) with several minisatellite core sequences as primers, was used to detect genetic variation in 17 species of the genus Oryza and several rice cultivars (O. sativa L.). The electrophoretic analysis of DAMD-PCR products showed high levels of variation between different species and little variation between different cultivars of O. sativa. Polymorphisms were also found between accessions within a species, and between individual plants within an accession of several wild species. The DAMD-PCR yielded genome-specific banding patterns for the species studied. Several DAMD-PCR-generated DNA fragments were cloned and characterized. One clone was capable of detecting multiple fragments and revealed individual-specific hybridization banding patterns using genomic DNA from wild species as well as rice cultivars. A second clone detected only a single polymorphic locus, while a third clone expressed a strong genome specificity by Southern analysis. The results demonstrated that DAMD-PCR is potentially useful for species and genome identification in Oryza. The DAMD-PCR technique also allows for the isolation of informative molecular probes to be utilized in DNA fingerprinting and genome identification in rice. Received: 1 October 1996 / Accepted: 25 April 1997  相似文献   

18.
RecA and its ubiquitous homologs are crucial components in homologous recombination. Besides their eukaryotic nuclear counterparts, plants characteristically possess several bacterial-type RecA proteins localized to chloroplasts and/or mitochondria, but their roles are poorly understood. Here, we analyzed the role of the only mitochondrial RecA in the moss Physcomitrella patens. Disruption of the P. patens mitochondrial recA gene RECA1 caused serious defects in plant growth and development and abnormal mitochondrial morphology. Analyses of mitochondrial DNA in disruptants revealed that frequent DNA rearrangements occurred at multiple loci. Structural analysis suggests that the rearrangements, which in some cases were associated with partial deletions and amplifications of mitochondrial DNA, were due to aberrant recombination between short (<100 bp) direct and inverted repeats in which the sequences were not always identical. Such repeats are abundant in the mitochondrial genome, and interestingly many are located in group II introns. These results suggest that RECA1 does not promote but rather suppresses recombination among short repeats scattered throughout the mitochondrial genome, thereby maintaining mitochondrial genome stability. We propose that RecA-mediated homologous recombination plays a crucial role in suppression of short repeat-mediated genome rearrangements in plant mitochondria.  相似文献   

19.
Summary Mitochondrial DNA from three somatic hybrid cell lines of Pennisetum americanum + Panicum maximum was compared with mitochondrial DNA of the parents. Gel electrophoresis of BamHI-restricted mitochondrial DNA indicated that extensive rearrangements had occurred in each of the three hybrid lines. The hybrid restriction patterns showed a combination of some bands from each parent plus novel fragments not present in either parent. Additional evidence for rearrangements was obtained by hybridization of eight DNA probes, carrying sequences of known coding regions, to Southern blots. Each of the somatic hybrids exhibited a partial combination of the parental mitochondrial genomes. These data suggest recombination or amplification of the mitochondrial genomes in the somatic hybrids.  相似文献   

20.
Summary The mitochondrial genome organizations of a number of independent culture-derived fertile CMS-S revertants with the nuclear genotype W182BN were compared to spontaneous field revertants with the genotypes WF9, M825/Oh07 and 38-11. Regions of the genome around sequences homologous to the terminal repeats of the linear S1 and S2 episomes characteristic of CMS-S mitochondria were used as hybridization probes on Southern blots of BamHI and SalI digested mitochondrial DNA. The results obtained suggest that the nuclear, not the cytoplasmic, genotype of the parent plant affects the type of novel mitochondrial DNA organization found in the revertant. The DNA reorganization during reversion from CMS-S in tissue culture appears to be similar to that observed in spontaneous revertants obtained during the normal plant life-cycle. Unlike the situation for reversion from CMS-T, no common DNA sequence or reading frame appeared to be lost or disrupted in revertants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号